• Title/Summary/Keyword: 묘기(墓記)

Search Result 235, Processing Time 0.202 seconds

Meteorological Constraints and Countermeasures in Rice Breeding -Breeding for cold tolerance- (기상재해와 수도육종상의 대책 - 내냉성품종육성방안-)

  • Mun-Hue Heu;Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.371-384
    • /
    • 1982
  • Highly cold tolerant varieties are requested not only at high latitute cool area but also tropical high elevated areas, and the required tolerance is different from location to location. IRRI identified 6 different types of cold tolerance required in the world for breeding purpose; a) Hokkaido type, b) Suweon type, c) Taipei 1st season type, d) Taipei 2nd season type, e) Tropical alpine type and, f) Bangladesh type. The cold tolerance requested in Korea is more eargent in Tongil group cultivars and their required tolerance is the one such as the physiological activities at low temperature are as active as in Japonica group cultivars at least during young seedling stage and reproduction stage. With conventional Japonica cultivars, such cold tolerant characters are requested as short growth duration but stable basic vegetative growth, less sensitive to high temperature and less prolonged growth duration at low temperature. The methods screening for cold tolerance were developed rapidly after the Tongil cultivar was reliesed. The facilities of screening for cold tolerance, such as, low temperature incubator, cold water tank, growth cabinet, phytotron, cold water nursery in Chuncheon, breeding nursery located in Jinbu, Unbong and Youngduk, are well established. Foreign facilities such as, cold water tank with the rapid generation advancement facilities, cold nurseries located in Banaue, Kathmandu and Kashimir may be available for the screening of some limitted breeding materials. For the reference, screening methods applied at different growth stages in Japan are introduced. The component characters of cold tolerance are not well identified, but the varietal differences in a) germinability, b) young seedling growth, c) rooting, d) tillering, e) discolation, f) nutrition uptake, g) photosynthesis rate, h) delay in heading, i) pollen sterility, and j) grain fertility at low temperature are reported to be distinguishable. Relationships among those traits are not consistent. Reported studies on the inheritance of cold tolerance are summarized. Four or more genes are controlling low temperature germinability, one or several genes are controlling seedling tolerance, and four or more genes are responsible for the pollen fertility of the rice treated with cold air or grown in the cold water nursery. But most of those data indicate that the results may come out in different way if those were tested at different temperature. Many cold tolerant parents among Japonicas, Indicas and Javanicas were identified as the results of the improvement of cold tolerance screening techniques and IRTP efforts and they are ready to be utilized. Considering a) diversification of germ plasm, b) integration of resistances to diseases and insects, c) identification of adaptability of recommending cultivars and, d) systematic control of recommending cultivars, breeding strategies for short term and long term are suggested. For short term, efforts will be concentrated mainly to the conventional cultivar group. Domestic cultivars will be used as foundation stock and ecologically different foreign introductions such as from Hokkaido, China or from Taiwan, will be used as cross parents for the adjustment of growth durations and synthsize the prototype of tolerances. While at the other side, extreme early waxy Japonicas will be crossed with the Indica parents which are identified for their resistances to the diseases and insects. Through the back corsses to waxy Japonicas, those Indica resistances will be transfered to the Japonicas and these will be utilized to the crosses for the improvement of resistances of prototype. For the long term, efforts will be payed to synthsize all the available tolerances identified any from Japonicas, Indicas and Javanicas to diversify the germ plasm. The tolerant cultivars newly synthsized, should be stable and affected minimum. to the low temperature at all the growing stages. The resistances to the diseases and insects should be integrated also. The rapid generation advancement, pollen culture and international cooperations were emphasized to maximize the breeding efficiency.

  • PDF

Changes of Weed Community in Lowland Rice Field in Korea (한국(韓國)의 논 잡초분포(雜草分布) 현황(現況))

  • Park, K.H.;Oh, Y.J.;Ku, Y.C.;Kim, H.D.;Sa, J.K.;Park, J.S.;Kim, H.H.;Kwon, S.J.;Shin, H.R.;Kim, S.J.;Lee, B.J.;Ko, M.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.254-261
    • /
    • 1995
  • The nationwide weed survey was conducted in lowland rice fields over whole country of Korea in 1992 in order to determine a change of weed community and to identify a major dominant weed species and/or problem weed. Based on morphological characteristics of weeds, population ratio of broad leaf weed was 42.6%, grasses weed-9.0%, sedges-33.4% and others were 15.0%. Annual weed was 33.4% while perennial weed was 66.6% in terms of life cycle of weeds. Meanwhile, there was different weed occurrence as affected by planting method of the rice plant. In hand transplanted paddy fields predominant weed species was Sagittaria trifolia L., Monochoria vaginalis Presl., and Aneilema japonica Kunth. In machine transplanted rice fields of infant and young rice seedling Eleocharis kuroguwai Ohwi. and S. trifolia L. were more predominant. There was high occurrence of M. vaginalis, Echinochloa crus-galli L., and Leesia japonica Makino in water seeding while E. crus-galli and Cyperus serotinus Rottb. were predominant weed species in dry seeded rice. Monoculture of the rice plant would cause to high occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and Sagittaria pygmaea Miq and there was higher population of S. trifolia, S. pygmaea, M. vaginalis, E crus-galli, and E. kuroguwai in double cropping system based on rice culture. In particular, there was high different weed occurrence under different transplanting times. E. kuroguwai, S. trifolia, S. pygmaea, M. vaginalis, and C. serotinus were higher population at the transplanting of 25 May and S. trifolia, E crus-galli, C. serotinus, and M. vaginalis at 10 June and S. pygmaea, E. kuroguwai, M. vaginalis, S. trifolia, and E. crusgalli at 25 June in Korea, respectively. Autumn tillage in terms of tillage time would cause more predominant weed species such as S. trifolia, E. kuroguwai, M. vaginalis, and S. pygmaea while spring tillage was higher population of E. kuroguwai, S. trifolia, E. crusgalli, M. vaginalis, and S. pygmaea. In plain area of paddy field there was higher occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and S. pygmaea and in mid-mountainous area S. trifolia, E. kuroguwai, M. vaginalis, E. crus-galli, and Ludwigia prostrate Roxb. while in mountainous area S. trifolia, M. vaginalis, Potamogeton distinctus Ben., E. kuroguwai, and E. crus-galli were. In 1992 the most ten predominant weed species at the rice field of Korea based on summed dominant ratio(SDR) were E. kuroguwai > S. trifolia > E. crus-galli > M. vaginalis > S. pygmaea > C. serotinus > L. prostrate > P. distinctus > A. japonica > Scirpus juncoides Roxb.

  • PDF

Studies on the Improvement of Nursery for Better Ripening Percentage and Prevention of Red Discoloration of Rice Variety "Tongil" (통일벼의 등숙(登熟) 향상(向上)과 적고방지(赤枯防止)를 위(爲)한 묘대개선(苗垈改善)에 관(關)한 연구(硏究))

  • Choi, Boum Rawl
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.9-26
    • /
    • 1974
  • 1. Results in Nursery This experiment was carried out on the effect of the seed treament, soil preparations, kinds of covering soil and inside covering methods in two rice varieties, 'Tongil' and 'Akibare' to find out the most reasonable model of the flat nursery bed, with which lower cost is required comparing with the tunnel nursery. The results obtained are as follows: (1) The seedling of all plots of the ordinary seed were very poor compared to the plots of sprouted seed. (2) In case that the variety 'Tongil' was cultivated on the dry nursery bed, the good seedling percentage and the plant height rat io were significantly increased but the other characteristics of the seedling were not noticeable. (3) The kinds of the covering soil had not an effect on the seedling growth significantly. (4) Inside straw mulching was seemed effective for the protection in the case of the extreme high temperature and heavy rain fall, even though there was not significant differences between inside straw mulching and no treatments at the flat type nursery. (5) Difference of seedling growth between the flat type nursery and the tunnel type nursery was not significant. And it's reason was thought that the covering period of polyethylene film was short in semi hot nursery for the common early transplanting cultivation of rice. (6) The percentage of good seedling was higher at 'Akibare' than 'Tongil', variety but the number of seedling leaf and the seedling growth ratio in height were significantly increased in the variety 'Tongil'. The other seedling characters between there two varieties were not significantly different. 2. Results after transplanting This experiment was conducted to study on the ripening percentage, rice yield and disease, appearance of the seedling from sprouted seed plots including common irrigated nursery as check plot after transplantnig. The results obtained are summarized as follows: (1) The rice yield, the yield components and the appearance of leaf discoloration of both varieties, 'Tongil' and 'Akibare' were slightly betterat the plot of the standard tunnel nursery than that of the flat nursery with inside mulching or the among these three plots. (2) For 'Tongil' variety, the ripening percentage and the rice yield were significantly decreased at the common irrigated nursery compared with semi hot nursery. (3) The ripening percentage and the rice yield of 'Akibare' contrasted with 'Tongil' were significantly decreased at thesemi 'hot-nursery compared with common irrigated nursery. The main reason was thought to be the injury of the rice stripe disease (Rice stripe disease virus). Considering above mentioned experimental result, the seedling of 'Tongil' must be cultivated on the semi bot nursery for better ripening percentage as well as rice yield and for prevention of red discoloration. And as a model of semi hot nursery, the polyethylene covering nursery of standard tunnel type is most desirable but that of flat type with inside straw mulching is thought to be desirable too.

  • PDF

Studies on the Low Temperature Injury of the Rice Varieties (통일계(統一系) 수도품종(水稻品種)의 저온장해(低溫障害)에 관(關)한 연구(硏究))

  • Choi, Chang-Yoel;Kim, Moon-Kyu;Jo, Jai-Seong;Kim, Choong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.10-20
    • /
    • 1977
  • An expriment was conducted to determine the rate of germination under low temperature and effects of low temperature on seedling of varieties derived from the cross between Indica and Japonica type of rice. Total of 30 varieties including leading variety, Tongil, were germinated at the temperature of $10^{\circ}C$. and $15^{\circ}C$. to determine the rate of germination, and six varieties also including Tongil were planted in pot, and seedlings were exposed to the temperature of $5^{\circ}C$. and $1^{\circ}C$. for 15 days and damage of plant growth due to low temperature was observed. 1. Under the condition of $10^{\circ}C$., varieties such as Iri #323, Suwon #253, Iri #325, Milyang #22, Suwon #251, and Suwon #267 were showing over 70 percent of germination ratio, while varieties, Dodolokiwase, Milyang #23, Yusin, Iri #328, and Iri #329 were below 10 percent in germination ratio. 2. Under the condition of $15^{\circ}C$., variety Suwon #262 was shown 100 percent of germination and varieties such as Milyg an#22, Dodlokiwase, Tongil, Milyang #29, Suwon #258, Milyang #23, Milyang #24, Milyang #28 and Milyang #21 were over 90 percent in germination ratio. However, varieties such as Iri #328, Iri #329, Jinheung, and Minehikari were below 50 percent in germination rate. 3. Considering the germination rate and average days required to germination, Milyang #22 and Iri #323 were highly resistant varieties to low temperature. The rate of germination of varieties from the cross between Indica and Japonica under low temperature was not always lower than that of varieties from Japonica type of rice. 4. Most of the seedlings of varieties used were quite resistant to $1^{\circ}C$. at least for six hours. However, leaves of rice were exposed to the the temperature of $1^{\circ}C$. for 12 hours, and the withered leaves were recovered soon when put in under normal temperature. The degree of leaf withering under low temperature was lower in Milyang #15, Japonica type than in varietieties belonging to $Indica{\times}Japonica$ type of rice. 5. When the seedlings of varieties such as Josaengtongil, Tongil and Yusin were exposed to the temperature of $1^{\circ}C$. for 36 hours, 70 percent of leaves were withered and when the time of expose were doubled, the leaves were completely died. When the temperature was fluctuated, over 75 percent of leaves were died, while 65 percent of leaves of Milyang #15 were died when exposed to $1^{\circ}C$, for 72 hours. 6. Significant growth retardation was observed for all entries when exposed to $1^{\circ}C$. for 24 to 36 hours. The growth retardation was apparently increased as the time of expose was extended.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF