• Title/Summary/Keyword: 뫼스바우어 분광분석

Search Result 35, Processing Time 0.026 seconds

Neutron Diffraction and Mössbauer Studies of Superexchange Interaction on Al Substituted Co-ferrite (Al이 치환된 Co 페라이트에 관한 뫼스바우어 분광법 및 중성자 회절 연구)

  • Kim, Sam-Jin;Myoung, Bo-Ra;Kim, Chul-Sung;Baek, Kyung-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.287-292
    • /
    • 2006
  • Al substituted $CoAl_{0.5}Fe_{1.5}O_{4}$ has been studied with x-ray and neutron diffraction, $M\"{o}ssbauer$ spectroscopy and magnetization measurements. $CoAl_{0.5}Fe_{1.5}O_{4}$ revealed a cubic spinel structure of ferrinmagnetic long range ordering at room temperature, with magnetic moments of $Fe^{3+}(A)(-2.29{\mu}_{B}),\;Fe^{3+}(B)(3.81\;{\mu}_{B}),\;Co^{2+}(B)(2.66{\mu}_{B})$, respectively. The temperature dependence of the magnetic hyperfine field in $^{57}Fe$ nuclei at the tetrahedral (A) and octahedral (B) sites was analyzed based on the $N\'{e}el$ theory of magnetism. In the sample of $CoAl_{0.5}Fe_{1.5}O_{4}$, the interaction A-B interaction and intrasublattice A-A superexchange interaction were antiferromagnetic with strengths of $J_{A-B}=-19.3{\pm}0.2k_{B}\;and\;J_{A-A}=-21.6{\pm}0.2k_{B}$, respectively, while the intrasublattice B-B superexchange interaction was found to be ferromagnetic with a strength of $J_{B-B}=3.8{\pm}0.2k_{B}$.

Crystallographic and Magnetic Properties of Li0.5Fe2.5-χRhχO4 by Using Applied Field Mossbauer Spectrometer (외부자기장 뫼스바우어 분광기를 이용한 Li0.5Fe2.5-χRhχO4의 자기적 성질과 결정학적 구조에 관한 연구)

  • Kang, Kun-Uk;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.219-223
    • /
    • 2004
  • L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ ($\chi$ = 0.25, 0.50, 0.75, 1.00) has been prepared by solid state reaction. Crystallographic and magnetic properties were investigated by Mossbauer spectroscopy, SQUID magnetometry, and x-ray diffraction. The crystal structure is found to be a cubic spinel structure with space group Fd3m for all the samples. The lattice constant $a_{0}$ increases from 8.3365 $\AA$ to 8.3932 $\AA$ with increasing Rh concentration $\chi$. The migration of Li ion has been confirmed by x-ray patterns and the results of applied field Mossbauer analysis. The temperature dependence of the absorption area of each site was analyzed with the Debye model for the recoil-free fraction. The Debye temperature for the octahedral sites is almost as large as for the tetrahedral sites, thereby suggesting similar inter-atomic binding forces for the octahedral and the tetrahedral sites. The saturated magnetic moment and the Mossbauer spectra taken at 4.2 K under the applied field (6 T) show that the spin structure of L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ is compatible with the collinear Neel Model.

Identification of Iron Compounds in Black Surface Layer of Stone Monuments (석조문화재 표면흑화 부위에 존재하는 철화합물의 동정)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • Blackening on stone monuments is serious problem, because it is not only aesthetically unattractive, but also an important process in stone deterioration. Black surface layers contain often a large amounts of iron compound. Therefore it is assumed that besides another elements the iron have influence on blackening of surface. After the samples of black surface layers were collected from the stone monuments (Museumsinsel) in Berlin, Germany, especially in this study has been used Mossbauer spectroscopy in order to determine the valence and chemical composition of iron. Mineralogical and chemical analyses were carried out X-ray diffractormetry and X-ray fluorescence method on the black surface layer's samples and original stone samples. The origin of Iron compound in the black surface provides the important clue for the conservation work of stone monuments, like removing of black surface. To find it, black surface layer on white sandstone -it contains very small amount of iron compound- was compared with that on the red sandstone (Fe contains very small amount of iron compound- was compared with that on the red sandstone (Fe abundant). As a results, it is assumed that the iron in black layer on white sandstone is originated mainly from a surrounding environmental material and for the iron in black layer on the red sandstone is responsible the original stone. Even if black surface layer was removed from the red sandstone, some other conservation method should be studied beyond removing of black surface layer, because the iron can move continuously from the inner zone of original stone to surface area.

Mössbauer and Infrared Absorption Spectroscopy of Tourmaline Minerals (전기석 광물의 뫼스바우어 및 적외선 흡수 분광학)

  • Kim, Hee Jong;Kim, Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.105-115
    • /
    • 1993
  • $M{\ddot{o}}ssbauer$ and Infrared absorption spectra of the iron-bearing tourmaline minerals show that the ferrous and ferric ions occupy the Y and Z octahedral sites. The Fe ions are almost ferrous, predominantly partitioning into Y site and partly take in Z site. The $Fe^{2+}$ content of the Z sites in brownish black tourmaline minerals are higher than that in blue/green tourmaline minerals. Therefore, 720 nm peak of brownish black samples is broader than that of blue/green samples in optical spectra. All of the blue/green tourmaline minerals used in experiment have only $Fe^{2+}$ ion. The IR spectra of tourmaline depend on the cation environments around OH groups, as also evidenced by their chemical analyses. There appear no difference in IR spectrum between O(1)H and O(3)H binding characters in the heat-treated samples. But the characteristic $3565cm^{-1}$ peak appears in the ferrous hydroxyl bearing silicates, where dehydroxylation temperature for OH coordinated to $Fe^{2+}$ is $700{\sim}800^{\circ}C$.

  • PDF

Investigation of High Frequency Properties of Y-type Hexaferrite Dependence on Synthesis Condition (소결 조건에 따른 Y-type Hexaferrite의 고주파 특성)

  • Lim, Jung Tae;Kim, Chul Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.56-59
    • /
    • 2014
  • The samples of $Ba_2CoZnFe_{12}O_{22}$ was synthesized by the solid-state reaction method. The toroids of $Ba_2CoZnFe_{12}O_{22}$ were sintered with various sintering temperature at 1050, 1100, 1150, and $1200^{\circ}C$, and studied by x-ray diffractometer, vibrating sample magnetometer, network analyzer, and Mssbauer spectrometer. From the XRD patterns, the density of samples increased with increasing sintering temperature. From the magnetic hysteresis curves up to 10 kOe at 295 K, the saturation magnetization ($M_s$) of $Ba_2CoZnFe_{12}O_{22}$ samples in various sintered at 1050, 1100, 1150 ,and $1200^{\circ}C$ were showed around $M_s$= 33.0 emu/g. However, With increasing sintering temperature, the coercivity ($H_c$) of samples decrease. Complex permeability and permittivity of samples in various sintering temperatures were measured between 100MHz to 4 GHz. With increasing sintering temperature, the permeability of samples increase.

The Effect of Non Magnetic ion Substitution for the FeCr2-xMxS4(M=Ga, In) by Mossbauer Spectroscopy (비자성 이온 Ga, In이 치환된 유화물 스피넬의 뫼스바우어 분광학 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • The sulphur spinel $FeCr_{2-x}M_xS_4$(M=Ga, In) have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), and vibrating sample magnetometer. The XRB patterns for samples $FeCr_{2-x}M_xS_4$(M=Ga, In: x=0.1, 0.3) reveal a single phase, which the Ga and In ions are partially occupied to the tetrahedral (A) site. The Neel temperature for the Ga substituted samples increases from 180 to 188 K, with increase from x=0.1 to 0.3. While, it decreases from 173 to 160 K, for the In substituted samples of the x=0.1 and 0.3, respectively. The Mossbauer spectra were collected from 4.2 K to room temperature. We have analyzed the Mossbauer spectra using eight Lorentzian lines fitting method for the $FeCr_{2-x}In_xS_4$(x=0.1) at 4.2 K, yielding the 1311owing results; $H_{hf}=146.0kOe,\;{\Delta}E_Q=1.88mm/s,\;\theta=36^{\circ},\;\phi=0^{\circ},\;\eta=0.6$, and R=1.9. The Ga ions enter into the both sites octahedral (B) and tetrahedral (A), simultaneously the same amounts of Fe ions migrate from the A to the B site, this result is an agreement with XRD results, too. The ${\Delta}E_Q$ of the A and B site in Mossbauer spectra of the samples $FeCr_{2-x}Ga_xS_4$(x=0.3) are 0.83 and 2.94mm/s, respectively. While they are 0.56 and 2.36mm/s for the $FeCr_{2-x}In_xS_4$(x=0.3). It is noticeable that the ${\Delta}E_Q$ for the Ga doped samples are larger than that of the corresponding In doped samples, in spite of the larger ionic radius for In ions. The bond lengths of Cr-S, for the Ga and In doped samples (x=0.3) are found to be 2.41 and $2.43\;{\AA}$, respectively. We interpret that the larger covalence effect from the smaller bond length induces a large asymmetric charge distribution. Finally, it gives a large quadrupole interaction.

Mössbauer Studies of Changed Interaction on Cr Ions in Chromite (Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구)

  • Choi, Kang-Ryong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.47-50
    • /
    • 2007
  • [ $ZnCr_2O_4$ ] shows geometrically frustrated magnet. Recently, $CoCr_2O_4$ has been investigated for multiferroic property and dielectric anomalies by spin-current model. Polycrystalline $CoCr_2O_4$ and $CoCrFeO_4$ compounds was prepared by wet-chemical process. Crystallographic and magnetic properties of $CoCr_2O_4$ and $CoCrFeO_4$ were investigate by using the x-ray diffractometer(XRD), vibrating sample magnetometer(VSM), superconducting quantum interference device magnetometer(SQUID), and $M\"{o}ssbauer$ spectroscopy. The crystal structure was found to be single-phase cubic spinel with space group of Fd3m. The lattice constants of $CoCr_2O_4$ and $CoCrFeO_4$ $a_0$ were determined to be 8.340 and 8.377 ${\AA}$, respectively. The ferrimagnetic transition temperature for the both samples were observed at 97 K and 320 K. The $M\"{o}ssbauer$ absorption spectra at 4.2 K show that the well developed two sextets are superposed with small difference of hyperfine field($H_{hf1}=507\;and\;H_{hf2}=492\;kOe$). Isomer shift values($\delta$) of the two sextets are found to be 0.33 and 0.34 mm/s relative to the Fe metal, respectively, which are consistent with the high spin $Fe^{3+}$ charge state.

Fabrication and Magnetic Properties of Ba Ferrite Powders by Sol-gel Process (졸겔법에 의한 Ba-ferrite분말의 제조 및 자기적 특성 연구)

  • An, Sung-Yong;Lee, Sang-Won;Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • M-type hexagonal BaFe$\sub$12/O$\sub$19/ ferrite powder was prepared by sol-gel process. The M-type hexagonal structure with ${\alpha}$ = 5.882 and c = 23.215 ${\AA}$ and its Curie temperature T$\sub$C/ was determined 780${\pm}$3 K. The isomer shifts of ,4f$_2$, 2a. 4f$_1$, 12k, and 2b were indicated 0.26, 0.24, 0.15, 0.25, and 0.24 mm/s, therefore, the valence states of the Fe ions were ferric (Fe$\^$3+/). By the law of approach to saturation (LAS), the effective anisotropy field H$\sub$A/ and crystalline anisotropy constant K$_1$ were estimated. The value of K$_1$ and H$\sub$A/ were K$_1$ = 2.5${\times}$10$\^6/erg/cm^3$ and H$\sub$A/ = 14 kOe, respectively.

Mossbauer studies of LiFeO2 powders by sol-gel process (졸겔 합성에 의한 LiFeO2분말의 Mossbauer 연구)

  • An, Sung-Yong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • $\alpha$-LiFe $O_2$ powders have been prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffractometry, Mossbauer spectroscopy, and vibrating Samples magnetometry. The ${\gamma}$-LiFe $O_2$+LiFe$_{5}$ $O_{8}$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3h in air and $\alpha$-LiFe $O_2$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3 h in $H_2$(5%)/Ar(Bal.) gas atmosphere. The crystal structure of $\alpha$-LiFe $O_2$ is found to be cubic with a lattice a=4.193$\pm$0.0005 $\AA$. The Neel temperature of $\alpha$-LiFe $O_2$ is found to be 130$\pm$3 K.

Studies on Crystallographic and Magnetic Properties of the Sn0.9957Fe0.01O2 (Sn0.9957Fe0.01O2의 결정학적 및 자기적 성질에 관한 연구)

  • Li, Yong-Hui;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.187-190
    • /
    • 2010
  • $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ prepared by a sol-gel method, and studied by x-ray diffractometer, vibrating magnetometer, Superconducting quantum interference devices and M$\ddot{o}$ssbauer spectroscopy. the crystal structure were found to be a rutile tetragonal structure with space group $P4_2$/mnm, and oxygen deficiency are 5.6 % by Rietveld refinement. magnetization value were $M_s=1.95{\times}10^{-2}{\mu}_B/Fe$ at room temperature, and Curri-weiss temperature were and ${\theta}_{cw}$ = 18 k, measurement of VSM and SQUID, respectively. Mssbauer spectra of $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ have been Sextet taken at various temperatures ranging from 4.2 K to RT, and isomer shift value $\delta$ = 0.18~0.36 mm/s of $^{57}Fe$ ion site all of the temperature range the state shows ferric.