• Title/Summary/Keyword: 몽고메리 멱승 알고리듬

Search Result 4, Processing Time 0.016 seconds

Experimental Analysis of MESD Attack on Smartcard. (스마트카드의 MESD 공격에 대한 실험적 분석)

  • 안만기;이훈재;하재철;김동렬;문상재
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.575-579
    • /
    • 2002
  • 스마트카드는 내부의 암호 알고리듬이 수행될 때, 비밀키와 관련된 여러 가지 물리적인 정보가 누출될 가능성이 있다. 이러한 물리적 정보 중에서 소비되는 전력을 측정하고 분석하는 차분 전력분석 공격은 매우 강력한 방법이다. 본 논문에서는 시차공격과 단순전력분석 공격에 대응하는 몽고메리 멱승 알고리듬과 스칼라 상수배 알고리듬이 구현된 스마트카드에서 차분 전력 분석 공격의 방법 중에서 동일한 메시지를 이용하는 MESD 공격을 실험하고 실험과정에서 소모전력의 측정 개수와 표본화율 그리고 잡음의 관계를 분석한다.

  • PDF

2,048 bits RSA public-key cryptography processor based on 32-bit Montgomery modular multiplier (32-비트 몽고메리 모듈러 곱셈기 기반의 2,048 비트 RSA 공개키 암호 프로세서)

  • Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1471-1479
    • /
    • 2017
  • This paper describes a design of RSA public-key cryptography processor supporting key length of 2,048 bits. A modular multiplier that is core arithmetic function in RSA cryptography was designed using word-based Montgomery multiplication algorithm, and a modular exponentiation was implemented by using Left-to-Right (LR) binary exponentiation algorithm. A computation of a modular multiplication takes 8,386 clock cycles, and RSA encryption and decryption requires 185,724 and 25,561,076 clock cycles, respectively. The RSA processor was verified by FPGA implementation using Virtex5 device. The RSA cryptographic processor synthesized with 100 MHz clock frequency using a 0.18 um CMOS cell library occupies 12,540 gate equivalents (GEs) and 12 kbits memory. It was estimated that the RSA processor can operate up to 165 MHz, and the estimated time for RSA encryption and decryption operations are 1.12 ms and 154.91 ms, respectively.

Scalable RSA public-key cryptography processor based on CIOS Montgomery modular multiplication Algorithm (CIOS 몽고메리 모듈러 곱셈 알고리즘 기반 Scalable RSA 공개키 암호 프로세서)

  • Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.100-108
    • /
    • 2018
  • This paper describes a design of scalable RSA public-key cryptography processor supporting four key lengths of 512/1,024/2,048/3,072 bits. The modular multiplier that is a core arithmetic block for RSA crypto-system was designed with 32-bit datapath, which is based on the CIOS (Coarsely Integrated Operand Scanning) Montgomery modular multiplication algorithm. The modular exponentiation was implemented by using L-R binary exponentiation algorithm. The scalable RSA crypto-processor was verified by FPGA implementation using Virtex-5 device, and it takes 456,051/3,496347/26,011,947/88,112,770 clock cycles for RSA computation for the key lengths of 512/1,024/2,048/3,072 bits. The RSA crypto-processor synthesized with a $0.18{\mu}m$ CMOS cell library occupies 10,672 gate equivalent (GE) and a memory bank of $6{\times}3,072$ bits. The estimated maximum clock frequency is 147 MHz, and the RSA decryption takes 3.1/23.8/177/599.4 msec for key lengths of 512/1,024/2,048/3,072 bits.

Design and FPGA Implementation of a High-Speed RSA Algorithm for Digital Signature (디지털 서명을 위한 고속 RSA 암호 시스템의 설계 및 FPGA 구현)

  • 강민섭;김동욱
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.32-40
    • /
    • 2001
  • In this paper, we propose a high-speed modular multiplication algorithm which revises conventional Montgomery's algorithm. A hardware architecture is also presented to implement 1024-bit RSA cryptosystem for digital signature based on the proposed algorithm. Each iteration in our approach requires only one addition operation for two n-bit integers, while that in Montgomery's requires two addition operations for three n-bit integers. The system which is modelled in VHDL(VHSIC Hardware Description Language) is simulated in functionally through the use of $Synopsys^{TM}$ tools on a Axil-320 workstation, where Altera 10K libraries are used for logic synthesis. For FPGA implementation, timing simulation is also performed through the use of Altera MAX + PLUS II. Experimental results show that the proposed RSA cryptosystem has distinctive features that not only computation speed is faster but also hardware area is drastically reduced compared to conventional approach.

  • PDF