• Title/Summary/Keyword: 몬테카를로 전산모사

Search Result 46, Processing Time 0.026 seconds

Monte Carlo Simulation for Radiation Protection Sheets of Pb-Free (무연 방사선 차폐 시트에 대한 몬테카를로 전산모사)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • Radiation protection equipment has widely used to protect human body from radiations, for example X-ray and gamma ray. The material of the radiation protection equipment is mainly lead (Pb) which has brought out lead poisoning and pollution when the equipment is fallen into disuse. This problem makes research and development find new Pb-free materials for use of radiation protection. Manufacturing and evaluation processes for developing those material were carried out repletely until obtaining the performance of protection rate. In this study, combination possibility of shielding material was studied using Geant4 monte carlo simulation. X-ray tube under the same condition in the real measurement of the protection rate was simulated, and X-ray tube spectrum was obtained. The X-ray tube spectrum was applied to study on the protection rate and lead equivalent. The porosity effect was simulated, and was one of key factors to determine protection rate or lead equivalent in radiation protection sheet of Pb-free.

A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code (Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사)

  • Shin, Jungwook;Shim, Hyunha;Kwak, Jungwon;Kim, Dongwook;Park, Sungyong;Cho, Kwan Ho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.226-232
    • /
    • 2007
  • We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to external-beam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single-scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double-scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.

  • PDF

The Feasibility Study on the Direct Use of the MC-derived Physical Quantities to Determine the Model Parameters of RTPS with -Model-Based Photon Dose Calculation Algorithm (모델기반 광자선량 계산방식을 사용하는 전산화치료계획장치의 모델변수 결정에 있어 몬테카를로 모사법에 의해 유도된 방사선 물리량의 직접 적용 가능성에 대한 연구)

  • 강세권;박희철;배훈식;조병철
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.77-83
    • /
    • 2004
  • The commissioning of a model-based treatment planning system requires many parameters to fit the measured depth doses and transverse profiles. For the commissioning of the Pinnacle$^3$ system, through the Monte Carlo (MC) simulation, the necessary parameters, including the photon spectrum, contaminant electrons, off-axis softening and fluency of photons, were observed. Through the simulation the parameters contained valuable information, but the calculated results of the Pinnacle$^3$ using the MC-derived parameters showed discrepancies with those measured for the off-axis softening and the fluency of photons. Even though the MC calculation produces reasonable values for the commissioning, the thorough physical basis of the Pinnacle$^3$'s commissioning process is needed in order to directly use the MC derived parameters.

  • PDF

Computer aided simulation of spark plasma sintering process (Part 2 : analysis) (스파크 플라스마 소결공정의 전산모사(2부 : 해석))

  • Keum Y.T.;Jung S.C.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.

연잎 효과를 모방한 초발수 표면 연구- 전산모사 해석을 통한 최적의 초발수 표면 도출

  • Choe, Se-Yong;An, Seong-Bae;Kim, Hyo-Jeong;Jang, Jun-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.67-74
    • /
    • 2016
  • 초발수 표면은 표면이 젖지 않으면서 물방울이 자유롭게 움직일 수 있는 표면을 말한다. 이는 자연에서 많이 관찰되며 예를 들면 연잎, 나비와 곤충의 다리가 대표적이다. 일반적으로 초발수 표면은 물방울과 접촉할 때 이루는 각이 $150^{\circ}$보다 크며, 표면을 $5^{\circ}$정도 기울이면 물방울이 굴러가기 시작한다. 특히 연잎 표면을 자세히 보면 마이크로/나노단위의 미세한 돌기가 표면 위에 존재한다. 이러한 연잎 표면의 구조에 따른 특성을 모방하여 표면 위에 인위적으로 다양한 모양, 크기의 돌기를 만들어 표면의 초발수 특성을 향상시키는 연구가 활발히 이루어지고 있다. 연구가 다양하고 광범위하게 진행되면서, 학문적인 원인 분석 외에도 산업에서의 활용가능성이 주목받고 있다. 이에 따라 이 논문은 전산모사 방법을 사용하여 표면 돌기와 관련된 다양한 변수(돌기의 모양, 높이, 너비, 돌기 사이의 간격, 표면과 물 분자 간의 에너지)에 따라 표면의 초발수 특성이 어떻게 변하는지 연구해보고, 초발수 현상의 특징과 그 발생 원인을 이해하는데 목적을 두며 이러한 연구결과는 실제 산업현장에서 최적의 초발수 표면을 제작하는데 도움을 줄 것이다.

  • PDF

Markov Chain Monte Carlo Simulation to Estimate Material Properties of a Layered Half-space (층상 반무한 지반의 물성치 추정을 위한 마르코프 연쇄 몬테카를로 모사 기법)

  • Jin Ho Lee;Hieu Van Nguyen;Se Hyeok Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.203-211
    • /
    • 2023
  • A Markov chain Monte Carlo (MCMC) simulation is proposed for probabilistic full waveform inversion (FWI) in a layered half-space. Dynamic responses on the half-space surface are estimated using the thin-layer method when a harmonic vertical force is applied. Subsequently, a posterior probability distribution function and the corresponding objective function are formulated to minimize the difference between estimations and observed data as well as that of model parameters from prior information. Based on the gradient of the objective function, a proposal distribution and an acceptance probability for MCMC samples are proposed. The proposed MCMC simulation is applied to several layered half-space examples. It is demonstrated that the proposed MCMC simulation for probabilistic FWI can estimate probabilistic material properties such as the shear-wave velocities of a layered half-space.

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.