• Title/Summary/Keyword: 목표성능

Search Result 2,214, Processing Time 0.029 seconds

Study on a New Method for Precise Stop Control of Metro Trains: In Case of Large Speed Error (도시철도 열차 정위치 정차제어의 새로운 방안에 대한 연구: 속도 오차가 큰 경우)

  • Kim, Jungtai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2021
  • One of the requirements of metro trains is to stop with precision to ensure that the train can stop precisely at the designated location on the platform. If this is not satisfied, interference with the screen door occurs, causing inconvenience to passengers and delays in operation. In the case of an automatic operated train, the current position is determined by the current speed information of the train, and control is performed by issuing an acceleration/deceleration command. Therefore, accurate control becomes impossible if the error of the speed information is large. In metro railroads, a Precision Stop Marker (PSM) is used to correct the position error, so that the error of stop control can be reduced by correcting the position error at a specific point. On the other hand, because the PSM itself has only position information, it does not compensate for the speed error. This paper proposes a method for performing in-place stop control by estimating the speed with the PSM progress information. The speed can be estimated when the train is operated at a constant deceleration speed, and the target deceleration can be obtained to perform stop control. The feasibility and excellence of the proposed method are shown through a numerical simulation.

Comparison of the Priority of Required Capabilities of the Warrior Platform by the Types of Military Unit through AHP Analysis (AHP 분석을 통한 부대 임무유형별 워리어플랫폼 요구능력 우선순위 비교)

  • Kim, Wukki;Shin, Kyuyong;Jo, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • The Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. The Warrior Platform project is divided into three stages and is being promoted. In the first stage, the quality and performance of individual items are improved, in the second stage, items between system development are integrated, and in the third stage, the combat capability is maximized by developing an integrated unit weapon system. In this paper, detailed sub-items for the five essential required competencies (survival, lethality, mobility, sustainability, Communication) that are considered for building an effective warrior platform are presented. We also present a plan that can be used to prepare a specific master plan for the Army's Warrior Platform project by using Analytic Hierarchy Process(AHP) and selecting the priority of the five required capabilities and detailed sub-items for different unit types. As a result of analyzing the priorities of the four types of units with different mission types, we find that there are differences for each unit. These results are expected to be used as useful reference materials for setting the future direction for the development of warrior platform.

A Study on Improving the Efficiency of Facility Safety Inspection Work Using Images (영상을 활용한 시설물 안전점검 작업 효율성 향상 방안 연구)

  • Jeon, Kyungsik;Kim, Jintae;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • In general, the daily safety inspection activities, which investigate damages in structures and measures the size of the damage, have been relied heavily on the visual inspection so far. Since the probe of the condition and performance of facilities by such personnel is often dependent on the subjective judgment of the investigator, the consistency and repeatability of the probing results may reduce. Particularly, damage located in a difficult-to-reach place depends mainly on experience with the naked eye, and an unsafe method using a ladder has mainly applied when necessary. Therefore, in this study, we tried to propose a way of using images that can reduce the deviation between safety inspection investigators, enhance objectivity, and improve the safety of workers. In this study, we have applied homographic transformation as a method of correcting the image. As a result of analyzing the size of the damage in the corrected image of the test subject, it confirms that the accuracy of measuring the magnitude of the damage can satisfy the target levels of 5.0mm and 0.005m2, the target accuracy levels. As a result of the field verification test to which the proposed image correction technique applied, the coefficient of variation of the crack length in the structure decreased from 5.4~7.0% to 0.072~0.12%, and that of the damaged area from 10.9% to 1.6%. It confirms that the measurement accuracy is improved. Therefore, it is expected that this study on the image utilization technique in safety inspection activities can increase the accuracy of damage measurement and improve the reliability of the safety inspection reports and exterior survey drawings.

A Study on Reducing Learning Time of Deep-Learning using Network Separation (망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.273-279
    • /
    • 2021
  • In this paper, we propose an algorithm that shortens the learning time by performing individual learning using partitioning the deep learning structure. The proposed algorithm consists of four processes: network classification origin setting process, feature vector extraction process, feature noise removal process, and class classification process. First, in the process of setting the network classification starting point, the division starting point of the network structure for effective feature vector extraction is set. Second, in the feature vector extraction process, feature vectors are extracted without additional learning using the weights previously learned. Third, in the feature noise removal process, the extracted feature vector is received and the output value of each class is learned to remove noise from the data. Fourth, in the class classification process, the noise-removed feature vector is input to the multi-layer perceptron structure, and the result is output and learned. To evaluate the performance of the proposed algorithm, we experimented with the Extended Yale B face database. As a result of the experiment, in the case of the time required for one-time learning, the proposed algorithm reduced 40.7% based on the existing algorithm. In addition, the number of learning up to the target recognition rate was shortened compared with the existing algorithm. Through the experimental results, it was confirmed that the one-time learning time and the total learning time were reduced and improved over the existing algorithm.

Connectivity Verification and Noise Reduction Analysis of Smart Safety Helmet for Shipyard Worker (조선소 작업자를 위한 스마트 안전모의 커넥티비티 검증 및 소음저감 분석)

  • Park, Junhyeok;Heo, Junyeoung;Lee, Sangbok;Park, Jaemun;Park, Jun-Soo;Lee, Kwangkook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2022
  • Currently, the automation and intelligence of the shipbuilding industry have improved its work production capacity and cost competitiveness, but the reduction rate of safety accidents among industrial site workers is still low and the damage caused by safety accidents is very serious, so there is a need for improvement according to the workplace. This research aims to demonstrate the connectivity between smart safety helmets in the demonstration area to verify the effectiveness along with the development of smart helmets for worker protection and environmental safety in shipyards. For efficient communication between workers, impact noise of over 95dB was confirmed in the workplace, and noise reduction was required. To solve this problem, the filtering performance was compared and analyzed using the Butterworth, Chebyshev, and elliptic algorithms. The connectivity test and noise reduction method between smart helmets proposed in this study will increase the usability and safety of the field through the development of advanced smart helmets tailored to the shipbuilding workplace in the future.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.