Annual Conference on Human and Language Technology
/
2022.10a
/
pp.71-76
/
2022
목적 지향 대화 시스템은 사용자가 원하는 목적을 달성하기 위해 사용하는 시스템으로 일상 대화와 다르게 시스템이 정보를 명확히 전달하는 것이 중요하다. 따라서 최근 연구에서 목적 지향 대화 시스템을 위한 자연어 생성 모델은 정해진 대화 정책에 따라 알맞은 응답을 생성할 수 있도록 의도와 슬롯 정보를 담은 대화 행위(Dialog Act)를 활용한다. 하지만 대화 행위는 생성하는 문장을 탁월하게 제어하는 반면에 대화의 흐름과 상황에 맞게 다양한 문장을 생성하기 어렵다는 문제점을 가지고 있다. 이러한 문제점을 해소하고자 본 논문에서는 목적에 부합하는 내용을 명확하게 자연어로 생성하기 위해 대화 행위를 사용하면서 동시에 일상 대화 생성 모델과 같이 문맥을 고려하여 대화 흐름에 어울리는 자연스러운 문장을 생성할 수 있는 문맥 기반의 제어 가능한 자연어 생성 모델을 제안한다. 실험에서는 KoGPT2 사전 학습 모델과 한국어 대화 데이터셋을 사용하였으며 실험을 통해 대화 행위 기반의 자연어 생성 모델과 본 연구에서 제안한 문맥 기반의 제어 가능한 자연어 생성 모델을 비교하였다. 결과적으로 대화 행위를 단독으로 학습한 모델보다 일정 문맥을 함께 학습한 모델이 유의미한 BLEU 점수 향상을 보인다는 점을 확인하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.147-150
/
2018
목적 지향 대화 시스템은 자연어 이해, 대화 관리자, 자연어 생성과 같은 세분화 모델들의 결합으로 이루어져있어 하위 모델에 대한 오류 전파에 취약하다. 이러한 문제점을 해결하기 위해 자연어 이해 모델과 대화 관리자를 하나의 네트워크로 구성하고 오류에 강건한 심층 Q 네트워크를 제안한다. 본 논문에서는 대화의 전체 흐름을 파악 할 수 있는 순환 신경망인 LSTM에 심층 Q 네트워크 적용한 심층 순환 Q 네트워크 기반 목적 지향 대화 시스템을 제안한다. 실험 결과, 제안한 심층 순환 Q 네트워크는 LSTM, 심층 Q 네트워크보다 각각 정밀도 1.0%p, 6.7%p 높은 성능을 보였다.
KIPS Transactions on Software and Data Engineering
/
v.6
no.11
/
pp.499-506
/
2017
Chatter bots are normally used in task-oriented dialogue systems to support free conversations. However, there is not much research on how chatter bots as auxiliary system should be different from independent ones. In this paper, we have developed a chatter bot for a dialogue-based computer assisted language learning (DB-CALL) system. We compared the chatter bot in two different cases: as an independent bot, and as an auxiliary system. The results showed that, the chatter bot as an auxiliary system showed much lower satisfaction than the independent one. A discussion is held about the difference between an auxiliary chatter bot and an independent bot. In addition, we evaluated a search-based chatter bot and a deep learning based chatter bot. The advantages and disadvantages of both methods are discussed.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.531-534
/
2022
신경망 기반 심층학습 기술은 대화처리 분야에서 대폭적인 성능 개선을 가져왔다. 특히 GPT-2와 같은 대규모 사전학습 언어모델을 백본 네트워크로 하고 특정 도메인 타스크 대화 데이터에 대해서 미세조정 방식으로 생성되는 종단형 대화모델의 경우, 해당 도메인 타스크에 대해서 높은 성능을 내고 있다. 하지만 이런 연구들은 대부분 하나의 도메인에 대해서만 초점을 맞출 뿐 싱글 모델로 두 개 이상의 도메인을 고려하고 있지는 않다. 특히 순차적인 미세 조정은 이전에 학습된 도메인에 대해서는 catastrophic forgetting 문제를 발생시킴으로써 해당 도메인 타스크에 대한 성능 하락이 불가피하다. 본 논문에서는 이러한 문제를 해결하기 위하여 MultiWoz 목적지향 대화 데이터에 오픈 도메인 칫챗 대화턴을 유사도에 기반하여 추가하는 데이터 증강 방식을 통해 사용자 입력 및 문맥에 따라 MultiWoz 목적지향 대화와 오픈 도메인 칫챗 대화를 함께 생성할 수 있도록 하였다. 또한 목적지향 대화와 오픈 도메인 칫챗 대화가 혼합된 대화에서의 시스템 응답 생성 성능을 평가하기 위하여 오픈 도메인 칫챗 대화턴을 수작업으로 추가한 확장된 MultiWoz 평가셋을 구축하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.497-501
/
2022
대화 상태 추적(Dialogue State Tracking)은 특정 목적을 달성하기 위한 대화 시스템인 목적 지향 대화 시스템의 핵심 부분으로, 대화에서 표현된 사용자의 목적을 추출한다. 조기 위험 검출 시스템은 연속적으로 들어오는 정보를 바탕으로 분류 대상인지 아닌지를 판별하며, 정확도 저하를 피하면서 최대한 빠르게 분류하는 것을 목표로 한다. 본 연구에서는 대화 상태 추적 시스템에서 나온 은닉층을 입력으로 하여 실시간으로 공황 장애 여부를 점진적으로 조기 분류하는 시스템과 조기 분류를 위한 새로운 손실 함수를 제안한다. 조기 위험 검출 시스템에 대화 상태인 belief state의 정보를 함께 사용했을 때, 큰 성능 향상을 보였으며 대화 상태가 조기 위험 검출에 필요한 정보를 담고 있음을 확인할 수 있다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.421-426
/
2020
다중 도메인 목적 지향 대화에서 기존 딥 러닝을 이용한 대화 상태 추적(Dialog state tracking)은 여러 턴 동안 누적된 사용자와 시스템 간 대화를 입력 받아 슬롯 밸류(Slot value)를 추출하는 모델들이 연구되었다. 하지만 이 모델들은 대화가 길어질수록 연산량이 증가한다. 이에 본 논문에서는 다중 도메인 대화에서 누적된 대화의 history 없이 슬롯 밸류를 추출하는 방법을 제안한다. 하지만, 단순하게 history를 제거하고 현재 턴의 발화만 입력 받는 방법은 문맥 정보의 손실로 이어진다. 따라서 본 논문에서는 도메인 상태(Domain state)를 도입하여 매 턴 마다 대화 상태와 함께 추적하는 모델을 제안한다. 도메인 상태를 같이 추적함으로써 현재 어떠한 도메인에 대하여 대화가 진행되고 있는지를 파악한다. 또한, 함축된 문맥 정보를 담고 있는 이전 턴의 대화 상태와 도메인 상태를 현재 턴의 발화와 같이 입력 받아 정보의 손실을 줄였다. 대표적인 데이터 셋인 MultiWOZ 2.0과 MultiWOZ 2.1에서 실험한 결과, 대화의 history를 사용하지 않고도 대화 상태 추적에 있어 좋은 성능을 보이는 것을 확인하였다. 또한, 시스템 응답과 과거 발화에 대한 의존성을 제거하여 end-to-end 대화 시스템으로의 확장이 좀 더 용이할 것으로 기대된다.
목적 지향적 대화 시스템(Goal-oriented dialogue system)은 텍스트나 음성을 통해 특정한 목적을 수행할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.457-460
/
2021
대화 시스템은 인공지능과 사람이 자연어로 의사 소통을 하는 시스템으로 크게 목적 지향 대화와 일상대화 시스템으로 연구되고 있다. 목적 지향 대화 시스템의 경우 날씨 확인, 호텔 및 항공권 예약, 일정 관리 등의 사용자가 생활에 필요한 도메인들로 이루어져 있으며 각 도메인 별로 목적에 따른 시나리오들이 존재한다. 이러한 대화는 사용자에게 명확한 발화을 제공할 수 있으나 자연스러움은 떨어진다. 일상 대화의 경우 다양한 도메인이 존재하며, 시나리오가 존재하지 않기 때문에 사용자에게 자연스러운 발화를 제공할 수 있다. 또한 일상 대화의 경우 검색 기반이나 생성 기반으로 시스템이 개발되고 있다. 검색 기반의 경우 발화 쌍에 대한 데이터베이스가 필요하지만, 생성 기반의 경우 이러한 데이터베이스가 없이 모델의 Language Modeling (LM)으로 부터 생성된 발화에 의존한다. 따라서 모델의 성능에 따라 발화의 품질이 달라진다. 최근에는 사전학습 모델이 자연어처리 작업에서 높은 성능을 보이고 있으며, 일상 대화 도메인에서도 역시 높은 성능을 보이고 있다. 일상 대화에서 가장 높은 성능을 보이고 있는 사전학습 모델은 Auto Regressive 기반 생성모델이고, 한국어에서는 대표적으로 KoGPT2가 존재한다. 그러나, KoGPT2의 경우 문어체 데이터만 학습되어 있기 때문에 대화체에서는 낮은 성능을 보이고 있다. 본 논문에서는 대화체에서 높은 성능을 보이는 한국어 기반 KoDialoGPT2를 개발하였고, 기존의 KoGPT2보다 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.518-523
/
2020
본 논문에서는 목적 지향 대화 시스템을 위한 대화 상태 추적 시스템과 사용자 시뮬레이터를 설계 및 제안한다. 사용자 시뮬레이터는 작성된 대화 상태 추적 시스템을 평가하기 위한 용도로 사용된다. 본 논문에서 제안하는 대화 상태 추적 시스템은 대화 기록과 함께 사전에 학습된 대화 기록 및 규칙/통계 기반 추론 시스템의 추론 결과를 입력으로 받는다. 그리고 입력된 발화 기록 중 마지막 사용자 발화의 사용자 목표와 개체명 그리고 다음 시스템 발화의 화행을 추론한다. 또한, 작성된 대화 상태 추적기의 성능을 평가하고 분석하기 위해, 주어진 환경에서 시스템과 대화를 수행하며 대화 시스템의 성능을 평가하는 사용자 시뮬레이터를 구현 및 적용하였다. 본 연구에서 수행된 실험과 분석을 통해, 규칙 및 통계 기반의 기반 시스템을 이용해 목표 시스템의 성능 개선이 가능함을 보인다. 또한, 제안하는 사용자 시뮬레이터는 규칙과 통계를 이용해 평가 코퍼스 없이 여러 상황에 대해 대화 시스템의 성능을 평가할 수 있다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.111-115
/
2017
목적 지향적 대화 시스템(Goal-oriented dialogue system) 은 텍스트나 음성을 통해 특정한 목적을 수행 할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.