• Title/Summary/Keyword: 목재방부제

Search Result 36, Processing Time 0.018 seconds

CCA 방부 목재로 지은 통나무집 주변 토양의 중금속 오염도 평가

  • Park Eun-Ju;Song Byeong-Yeol;Gu Jin-Hui;Ryu Seung-Hye;Kim Dong-Jin;Kim Hui-Gap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.234-237
    • /
    • 2006
  • 방부 목재는 일반 목재에 비해 사용 수명이 20-40년 정도 길기 때문에 사용이 점차 증가하고 있다 국내에서 가장 널리 사용되는 방부제는 chromate copper arsenate(CCA)이다 CCA 성분인 구리, 크롬 및 비소는 생태계 및 인체에 대한 위해성 때문에 많은 나라에서 처리 목재의 사용을 금지하거나 제한하고 있는 실정인 반면에, 국내에서의 사용은 늘어만 가고 있는 실정이다. 이 연구에서는 방부 목재를 사용하여 지은 3년 된 통나무집 한 곳과 8년 된 통나무집 두 곳에 인접한 토양시료를 채취, 분석하여 방부 목재 사용으로 인한 토양 오염도를 평가하였다. 건물에 인접한 지점부터 수평 방향으로 25cm 간격으로 100cm까지 5개의 표토 시료를 채취하였다. 또한 배경 농도를 알아보기 위해서 건물에서 조금 떨어진 곳에서 토양시료를 2개 채취하였다. 토양시료는 입도, 전기전도도, pH, 유기물 함량 등의 물리 화학적 성질에 대해 분석하였으며, CCA성분은 microwave oven을 이용하여 추출한 후 분석하였다. 0cm에서 CCA성분은 배경 농도보다. 높게 나타났다. 용출양은 3년 된 통나무집의 경우 크롬(67.2mg/kg)>구리(20.3mg/kg)>비소(4.14mg/kg)의 순으로 측정되었으며, 8년 된 통나무집의 경우 크롬(36.6mg/kg)>구리(21.3mg/kg)>비소(1.93mg/kg)의 순으로 측정되었다. 구리를 제외하고 크롬과 비소의 경우 3년 된 통나무집에서 많이 용출되는 것을 알 수 있었다. 3년 된 통나무집의 구리와 크롬은 100cm농도가 배경농도보다. 높게 나타났으며, 비소의 경우는 100cm농도가 배경농도보다. 낮게 나타났다. 이는 구리와 크롬이 100cm이상으로 이동을 한다는 것을 알려주며, 8년 된 통나무집의 경우는 크롬과 비소가 100cm이상으로 이동한다는 것을 알 수 있었다. 이 연구를 통해 CCA로 처리된 방부목재에서는 CCA성분이 용출되는 것을 알 수 있었으며, 크롬과 비소의 경우는 초기에 많이 용출되고, 구리의 경우는 꾸준히 용출되는 것을 알 수 있었다. 3년 된 통나무집이 8년 된 통나무집보다. 용출양이 더 컸으며, 이는 CCA성분이 초기에 많이 용출된다는 것을 의미한다.

  • PDF

Distributions of Chromium, Copper, and Arsenic in Soils Adjacent to Stairs, a Deck, and a Sound Barrier Constructed with a Wood Preservative CCA-Treated Timbers (방부제 CCA로 처리된 목재를 사용한 계단, 데크 및 방음벽에 인접한 토양에서 크롬, 구리 및 비소의 분포)

  • Kim He-Kap;Kim Dong-Jin;Park Jeong-Gue;Shin Yong-Seung;Hwang In-Young;Kim Yoon-Kwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.54-64
    • /
    • 2006
  • Chromated copper arsenate (CCA), a wood preservative, has been widely used to protect wood products from attacks by bacteria, fungi and insects. However, the use of CCA is currently forbidden or limited to some applications in many countries because the toxic elements (Cr, Cu, and As) of CCA are released into the environments during outdoor uses, which may cause adverse health effects on humans and ecological systems. This study was conducted to investigate the distributions of chromium, copper and arsenic in soils adjacent to two CCA-treated wood structures. In a 7 month old pond entry structure, ten surface soil samples (0-2.5 cm) were collected at lateral distances of 0, 0.5, and 1 m from the stairway, and nine surface soil samples were collected beneath the deck. Nine top soil samples were taken from a 2 year old sound barrier structure at lateral distances of 0, 1, and 2 m. Background surface soil samples were also collected from each structure. Samples were analyzed for some physicochemical properties such as pH, electrical conductivity, organic matter content, and soil texture. Following the extraction of the elements with a microwave digestion system, samples were analyzed for Cr, Cu, and As. The concentrations of the three elements in soils adjacent to the structures were significantly elevated compared to the background levels, indicating that the elements have been leached out of the structures. Released e1ements showed lateral concentration gradients within 1 m. The elevations of the three elements in soils underneath the deck did not seem different (background-corrected concentrations: Cr, 5.01 mg/kg; Cu, 5.50 mg/kg; As, 4.91 mg/kg), while the elements in soils near the sound barrier were elevated in the order of As>Cu>Cr with measured concentrations of 49.7, 44.7 and 52.5 mg/kg, respectively. Background As, Cu, and Cr concentrations near the sound barrier were 9.88, 30.8, and 46.5 mg/kg, respectively. These results showed that CCA constituents are released into the environment and it is suggested that risk assessment need to be conducted to investigate harmful effects of the released elements on humans and ecological systems.

Solvent Extraction of Preservative Components from CCA Treated Wood (CCA 처리재로부터 방부제 유효성분의 용제추출)

  • Kim, Gyu-Hyeok;Kong, Il-Gon;Ra, Jong-Bum;Cho, Jae-Sung;Kim, Jae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.50-56
    • /
    • 2003
  • This research was performed to select an appropriate agent to extract preservative components from CCA-treated wood, and then to evaluate the effect of reagent concentration, extracting temperature, and extracting time on the removal of chrome, copper, and arsenic from treated wood. Hydrogen peroxide was selected as the best extracting agent when considered extraction yield as well as use and environmental safety. Its extraction yield was dependent on extracting variables (temperature, concentration, and time), and a highly significant interaction existed among variables. It should be possible to optimize extraction by manipulating these extracting variables. The results may suggest that the required temperature conditions for the reasonable removal of CCA components are at least above 40℃ because extracting time is too long at low temperature (20℃). Reagent concentrations for extracting at above 40℃ should be decided by considering the extracting time.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Effect of Neonicochid Type Wood Preservative on Adhesive Properties of Resorcinol Resin for Lminated Wood (네오니코치드계 목재보존제가 집성재 제조용 레조르시놀 수지의 접착력에 미치는 영향)

  • Lee, Dong Heub;Lee, Jong Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • The effect of neonicochid type wood preservatives on adhesive properties of resorcinol-formaldehyde resin for laminated wood manufacture was examined. By the previous studies, it was verified that the neonicochid type preservative has a high termite-proofing and anti-mold effectiveness. Commercial ACQ (ammoniacal copper quaternary compounds) and CUAZ (copper azol compounds) were used as comparison preservatives of effects on adhesive properties. The wood specimens used japanese red pine (Pinus densifrora) after application with preservatives and then bonded with resorcinol-formaldehyde resin. Adhesive properties were evaluated by shearing strength of adhesive bond and wood failure to dry condition or after accelerated aging test. Of all laminated woods, the wood specimens spread with ACQ or CUAZ showed the lowest shearing strength of adhesive bond. We estimated that the decrease of shearing strength was caused by copper in the ACQ or CUAZ preservatives. On the application of the neonicochid type preservatives, the wood specimens showed the highest shearing strength even after accelerated aging test. From these results, it is concluded that the copper-free neonicochid type preservative not affected the curing of resorcinol-formaldehyde resin.

Weatherproof-properties Evaluation of Castor Oil-impregnated Wood Using a Vacuum-pressure Method (감가압법으로 주입한 피마자유-처리 목재의 내후성 평가)

  • Ohkyung Kwon;Yeong Seo Choi;Daye Kim;Wonsil Choi;Young-kyu Lee;Kwon-min Kim;Joon weon, Choi;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.302-311
    • /
    • 2023
  • This study was conducted to evaluate the applicability of castor oil (CSO) as a natural wood preservative. CSO was treated into wood blocks prepared with domestic and imported wood species using a vacuum-pressure method, and then treatability, leachability and decay resistance of the CSO-treated wood blocks were examined. Although CSO was penetrated effectively into wood blocks of all wood species, the CSO-treatability was the highest in Western hemlock, followed by Japanese larch (LA), soft maple and Mongolian oak due to the difference of its anatomical structure. Except for LA, the more retained, the more leached during a saline water-immersing process for 48h. The use of ethanol added to reduce the viscosity of CSO affected negatively the treatability and leachability of wood blocks. Decay resistance, which was evaluated by the weight loss of wood blocks exposed against Fomitopsis palustris (FOP) and Trametes versicolor, of the CSO-treated/leached wood blocks was superior to that of control. Especially, most of wood blocks treated with preserving solution composed of only CSO (CSO-2) did not decayed and showed a very low weight loss against FOP. The decay resistance results from CSO retained in wood blocks after leaching. The retention of CSO could identify using the observation of X-ray microscope. Length of wood strips, which were treated with CSO-2 and then immersed in saline water for 2 weeks, hardly changed in all cutting directions. In addition, weight gain and length-swelling rate of the wood strips were extremely low compared to those of control. These results indicate that moisture resistance of the wood strips was improved by the CSO treatment. It is concluded that the treatment of CSO using a vacuum-pressure method provides the decay resistance and dimensional stability of wood, and thus CSO can be used as a natural wood preservative on various indoor and outdoor circumstances.

Evaluation of Weathering Durability of Waterborne Preservative Treated Wood by Accelerated Weathering (수용성 방부처리재의 기상열화 저항성 평가)

  • Lee, Myung-Jae;Lee, Dong-Heub;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.44-49
    • /
    • 2003
  • This study was carried out to evaluate the weathering durability of waterborne preservative (AAC, ACQ, CCA, CuAz) treated Japanese red pine (Pinus densiflora S. et Z.) sapwood samples by accelerated weathering, and to find out the factor of stability. When considered the color changes, weight losses, surface degradation, and microstructure changes due to weathering, ACQ-, CCA-, and CuAz-treated samples were durable against weathering; the weathering durability of AAC-treated samples was poor and similar to untreated controls. The lignin content in aqueous extracts collected from ACQ-, CCA-, and CuAz-treated samples during weathering was lower than that from untreated and AAC-treated ones. From these findings, we might concluded that weathering durability of ACQ-, CCA-, and CuAz-treated samples was enhanced by the fixation of preservative component(s) onto the lignin structure, which is very susceptible to weathering.

Effect of High-temperature Redrying on Drying Characteristics of CCA-treated Lodgepole Pine Dimension Lumber (고온 재건조가 CCA 처리 Lodgepole Pine 각재의 건조 특성에 미치는 영향)

  • Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.34-41
    • /
    • 1990
  • 본 연구는 CCA로 방부(防腐)처리된 Lodgepole pine 각재(角材)의 재건조(再乾燥)시 고온건조법(高溫乾燥法)의 적용이 건조속도(乾燥速度) 및 건조결함(乾燥缺陷)의 발생에 어떻게 영향하는가를 고찰하고자 수행되었다. 고온건조시 건조속도는 통당(通常) 열기건조(熱氣乾燥)시보다 약(約) 2.5배 증가되었으며, 방부처리재의 재건조 속도는 처리전(前)의 전건조속도보다 약간 감소됨을 보였다. 표면할열(表面割裂)의 발생정도(程度)은 전건조시의 경우, 고온건조시 보다 심(甚)하였으나 재건조시에는 건조방법간에 큰 차이가 없었다. 방부제의 침투(浸透)를 도모(圖謀)하기 위하여 자상(自傷)처리(Incising)된 각재의 경우에는 재건조시 절개부(切開部)의 연장(延長)에 의해 할렬의 정도가 증가됨을 보였다. 뒤틀림(Warping)의 발생정도는 고온건조시가 통상 열기건조에 비해 심하지 않았으며, 전(全) 건조과정을 통하여 발생된 뒤틀림은 WWPA가 정(定)해놓은 Lodgepole pine 2등급(等級)(No. 2 grade)의 뒤틀림 허용치(許容値)의 범위내(範圍內)에 있음을 보였다. 결론적(結論的)으로, 고온건조시 증가되는 건조속도와 건조재의 질(質)에 큰 영향을 주지않는 범위내에서 발생되는 건조결함을 고려할 때, Lodgepole pine의 전건조및 CCA 처리후 재건조를 위해 큰 문제없이 고온건조법이 적용될 수 있음을 보였다.

  • PDF

Performance of Structural Glulam Laminated with CuAz-3 Preservative Treated Lumber (CuAz-3처리 리기다소나무 제재목을 이용한 구조용 집성재 성능 평가)

  • Kim, Kwang-Mo;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.521-530
    • /
    • 2011
  • Nowadays, market demand of structural Glulam is growing and diversifying. The durability of Glulam should be significantly considered when they are intended to apply for out-door use such as timber bridge and pergola. This study was aimed to develop the manufacturing process of preservative treated structural Glulam using domestic softwood species. 10 m long structural Glulam were manufactured from domestic pitch pine logs with CuAz-3 preservative treatment. At each manufacturing process, the production yield was evaluated. Finally, bending tests were performed to verify the structural performance of manufactured Glulam. From the results, it was shown that the preservative treatment process hardly influenced on the production yield. But domestic pitch pine was proved to not be suitable for making the preservative treated Glulam due to the large difference of preservative permeability between sapwood and heartwood.

Field Treatments of Small Diameter Logs Using Sap Displacement Method (I) - Feasibility of Treatment Using Transpiration Method and Butt-end Method - (수액치환법을 이용한 소경재의 산지처리(I) - 증산법과 원구법을 이용한 처리 가능성 -)

  • Chun, Su-Kyoung;Kim, Jae-Jin;Ra, Jong-Bum;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.58-65
    • /
    • 2002
  • This research was carried out to develop field treatment techniques of thinned small diameter softwood logs and less utilized hardwood logs using sap displacement method. In this paper, we report the feasibility of using transpiration method and butt-end method for the treatment of three softwood species and three hardwood species with preservatives, fire-retardant chemicals, and dimensional stabilizer. Butt-end method was effective as a field treatment technique compared to transpiration method when considered the treatability, easiness of treatment, productivity of treated wood, and environmental aspects related to chemical treatment, regardless of the combination of wood species and chemicals.