• 제목/요약/키워드: 목상해지수

검색결과 6건 처리시간 0.021초

후방 추돌시 머리지지대 위치에 따른 목상해 연구 (A Study on Influence of the Head Restraint Position on Neck Injury in Rear End Collision)

  • 최동원;전용범;박인송
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.20-24
    • /
    • 2010
  • The position of the automobile's head restraint is very important for the neck injury in rear end collision. This study is about influence of the head restraint height and distance on neck injury during rear end collision. The effects of the position have been evaluated experimentally. The neck injuries are calculated by the relative acceleration between the upper and lower neck. As a result, It is found that the head restraint should be close enough to the back of the head and high enough to the top of the head.

후방추돌시 백세트 변화에 따른 인체모형의 목상해에 관한 예측 연구 (A Predictive Study on Backset Variation on the Neck Injury of Human Model during Rear-end Collision)

  • 박진수;백세룡;임종한;윤준규
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.251-258
    • /
    • 2018
  • 최근 자동차 교통량의 증가로 인해 차량 추돌사고가 급증하여 이에 따른 승객의 목상해가 증가해왔으며, 이를 방지하기 위한 자동차 시트의 설계적인 주안점을 고려하여 컴퓨터 시뮬레이션 기술을 확대 이용한 자동차충돌 해석연구가 활발히 진행되고 있다 본 연구에서는 인체모형 BioRID II 더미를 이용한 차량승객거동해석을 위한 MADYMO 프로그램을 사용하여 차량속도 16 km/h 운전조건의 후방추돌시 시트의 착좌자세인 백세트의 변화에 따른 승객의 목상해를 예측하였다. 그 결과로, 백세트가 짧을수록 접촉시작시간은 단축되지만 접촉완료시간은 거의 동일함을 알 수 있었고, T1 가속도는 백세트가 넓을수록 가속도는 증가함을 나타냈다. 또한 백세트가 넓을수록 인장력은 증가하고, 머리가 머리지대에 닿는 순간의 속도가 빨라짐으로써 목상해지수(NIC)는 증가함을 보였다.

컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가 (A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques)

  • 윤영한;구정서;이재완
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

후방추돌시 BioRIDII 머리-목의 거동과 목상해지수와의 비교 (Comparison Head-Neck Movement and Neck Injury Criteria of BiRIDII in Rear-impact Sled Test)

  • 김시우;심소정;서명원
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.51-57
    • /
    • 2010
  • In recent years, a large number of study for rear impact has been conducted and as a result of study, researchers proposed the neck injury criteria and test procedures. But many questions, related to injury criteria and dummy biomechanical levels, remain unresolved. In recently reports, rear impact motions of BioRIDIIg is not humanlike but better than other dummy(HybridIII, RID3d). So, in this paper, 4 times sled test would be done to find the substitutable neck injury criteria in BioRIDIIg. To review corelation trend with neck injury critera and head-neck movement, we compared with recently announced neck injury criteria(NIC, Nkm, T1 ect.) and head-neck X-direction movement in BioRIDIIg. Finally, we find the head-neck X-direction movement on head C.G to T1 point may be considerable as the additional neck injury criteria.

SUV & 트럭 차종의 USNCAP 통계분석, Part 1: 정면충돌 (Statistical Review for USNCAP on SUV & Pick-up, Part 1: Frontal Crash Test)

  • 범현균;김요셉;조기순;이호기
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.420-427
    • /
    • 2015
  • This paper statistically reviewed for the USNCAP frontal crash test results carried out by NHTSA. Vehicle samples were selected on total 20 vehicles which were included on 15 vehicles for MPV&SUV and 5 Pickup. The results was summarized as followings. The performance for the driver was better than the passenger's in the average sense. There exist distinctions between the driver and the passenger on the USNCAP front test procedure, for example dummy size, seating position and airbag style. Therefore these differences originated in the statistical results. Main effect was Neck injury for crash performance on both dummies on the average value. Root cause of neck injury was different for each dummy, ie, the driver caused from Nte & Ntf, but the passenger did absolutely Nte mode. Reliability evaluated from the standard deviation was highly dependent upon chest injury on the driver and neck injury on the passenger. Restraint system was also summarized.

2011년 모델에 대한 정면 미국신차안전도평가 결과에 대한 통계적 분석 (Statistical Review for USNCAP Front Crash Test Results in MY2011)

  • 범현균
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.81-87
    • /
    • 2012
  • New car assessment program (NCAP) originated from USNCAP in 1979 has been implemented in several countries or markets, for instance USA, Europe, Korea, Japan, China and Australia. NCAP has contributed greatly to reduce accidental tolls. But recently, NCAP performance has no distinction between cars because manufacturer have been continuously developed to improve NCAP performance. Therefore, NHTSA announced new USNCAP protocol becoming effective from MY2011. NHTSA had carried out many NCAP tests based on the new test protocol and announced these test results. In this paper, USNCAP test results were reviewed by statistical method. This review was focused on passenger cars and frontal crash test results in order to investigate effect of changes in new NCAP protocol. There are two key changes, one is sited female dummy in passenger position, the other is enlarged to 4 scoring body regions in each dummy. Results of this review were summarized as followings. Performance in Passenger (12.5%) is lower than Driver's (50%) for number of 5 star vehicle. Neck injury criterion is dominant to NCAP star rating for both dummies in the mean sense. For standard deviation, chest deflection is showed largest value in driver dummy but neck injury criterion is showed for passenger's. DKAB and PKAB were equipped 28.1% and 6.2%, respectively. Consequently, the countermeasure for new USNCAP frontal crash test is essential to control well dummy kinematics with some safety features including KAB to reduce neck injuries.