• Title/Summary/Keyword: 모형 터널 실험

Search Result 333, Processing Time 0.027 seconds

A study on heading failure mode for underground excavation in cohesionless soils (비점착성 지반의 지하공간 굴착면 파괴모드에 대한 연구)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Cho, Jae-Wan;Choi, Min-Gu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.197-207
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to heading collapses. A failure mode is one of the critical factors in the conventional methods of stability evaluation. Identification of failure modes is, therefore, essential in securing safe construction. In this study failure modes at the tunnel heading in cohesionless soils are investigated using physical model tests for various tunnel depths and ground surface inclinations. Test results showed that the effect of depth and the inclination of ground surface on a failure mode are of significance. It is identified that, with an increase in depth, failure modes become localized in a region close to tunnel face. It is also known that an increase in the inclination of ground surface results in inclined an d wide failure modes. Numerical simulation of laboratory tests was performed, and shown that the numerical analysis is useful in identifying the heading failure modes, particularly for large underground spaces.

  • PDF

A Study on the Ventilation Performance for Fan flow effect of Model Tunnel (모형도로터널의 환기성능에 미치는 FAN유량에 관한 연구)

  • Kim, Se-Jong;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.123-126
    • /
    • 2010
  • 터널내에 설치되는 제트팬은 비상시에는 연기와 같은 유독가스를 제거하는데 사용되며 평상시에는 장대터널에 있어서 차량에 의해 발생한 오염공기를 제거하는 중요한 역할을 한다. 파량의 피스톤효과에 의해서 일부 제거되기는 하나 1km이상의 장대터널에서는 반드시 필요로 한다. 이러한 제트팬의 효율적인 환기 및 제연설계를 위하여 CFD해석과 더불어 모형실험을 실시함으로서 터널내에 소실되는 에너지를 정량화하고 그 원인 파악과 함께 효율적인 환기설계를 위한 연구이다.

  • PDF

Establishment of Maintenance and Monitoring Standards for Shield and TBM Tunnels (Shield 및 TBM 터널의 유지관리계측 관리기준 설정에 관한 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The objective of this study was to improve the tunnel maintenance and monitoring technology by establishing the maintenance, management, and monitoring standards for shield and TBM tunnels, which had been applied more in recent years. Method: This study comprehensively analyzed and compared the data and model simulations of Seoul Subway Lines 7 and 9 and Bundang Line, shield and TBM tunnels in South Korea, tunnels in France and Japan, and Channel Tunnel in the UK. Result: This study set maintenance and monitoring standards when there was no design estimate based on numerical analyses such as section design and section analysis regarding the maintenance and monitoring section of shield and TBM tunnels. Conclusion: It is necessary to determine safety by comprehensively considering not only each monitoring item but also the changing trend and correlation of all items and compensation of the tunnel.

Experimental Study on the Determination of Critical Velocity for the Case of Fire in Long Traffic Tunnels (장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구)

  • Yoon Chanhoon;Yoon Sungwook;Yoo Yongho;Kim Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, scaled model tests were carried out to decide the optimal critical velocity, to prevent back layering in the case of fire in a long traffic tunnel. Realistic estimates were made for the time required for people to escape ken the tunnel and far the time required by the ventilation operator to increase the system speed to full capacity. The analysis, predicts that the emergency ventilation will start about 240 seconds after the tunnel fire. It was also found that prevention of back layering would occur within 4 minutes after fan operation. To find out optimal critical velocity, a 1/50 scaled model tunnel(diameter : 0.2 m and length : 20 m) based on the Froude similarity technique was constructed. Changing $\beta$ values in the Tetzner's equation, smoke propagation was observed. From the experiment, it was concluded that using a $\beta$ value of 0.5 to prevent back layering successfully allowed time for safe evacuation.

An experimental study on screw conveyor system of EPB shield TBM (EPB Shield TBM의 스크루 컨베이어 시스템에 관한 실험적 연구)

  • Kim, Sang-Hwan;Kim, Jin-Dae;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.519-530
    • /
    • 2011
  • The screw conveyor system installed in EPB Shield TBM chamber was manufactured in small scale for pilot test to investigate the tunnel muck hauling system that could control the earth pressure and support face thrust force. In this experimental study, there were three different test conditions that include screw angles, screw pitch, and screw RPM. Through analysis on test results based on the muck hauling amount per unit time from screw conveyor, the optimum conditions of screw conveyor were proposed to be efficiently performed by the muck processing system. Finally, this study provided the meaningful results such as optimum screw angle, screw RPM, and screw pitch for anti-reverse flow of muck hauling.

An Experimental Study on the Determination of Backlayering Distance in Tunnel Fires (터널 화재시 역기류의 위치 결정에 관한 실험적 연구)

  • 이성룡;유홍선
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • In this study reduced-scale experiments were conducted to determine the backlayering distance in tunnel fires. The 1/20 scale experiments were carried out under the Froude scaling using ethanol square pool fire ranging from 8 to 1km in each side with total heat release rate from 2.47 to 12.30 ㎾. It has been found that ventilation velocity increases with aspect ratio(tunnel height/tunnel width). At L$\_$B/$\^$*/ <5 the ventilation velocity increases proportional to the backlayering distance from 0.25 power of the heat release rate. However at L$\_$B/$\^$*/ $\geq$5 the ventilation velocity varies as the 0.3 power of the heat release rate.

Experimental Study on the Behavior of Two-phase Flow in Pipes Using Electrical Conductivity Meter (전기전도계를 이용한 관 내 이상류 거동에 대한 실험적 연구)

  • Lee, Kyungsu;Cho, Hanil;Lyu, Siwan;Rhee, Dong Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.456-460
    • /
    • 2016
  • 최근 기후변화의 영향과 급격한 도시화로 인한 하천 저류능력의 감소 및 부적절한 하수시설의 설계로 도시유역의 홍수 위험성이 증가하면서 적극적인 구조물적 홍수방어대책으로 대심도터널의 활용에 대한 필요성이 대두되고 있다. 일본을 비롯한 외국에서는 대심도터널의 활용이 적극적으로 고려되고 있으며 실제 설치 및 운영 사례 또한 증가하고 있다. 그러나 국내에서는 아직까지 홍수 방어용 대심도터널의 설치 및 운영된 사례가 없고 설계 및 시공과 관련한 기준 및 연구가 미미한 실정이다. 본 연구에서는 대심도터널 내부에서의 이상흐름 거동특성을 구명하기 위하여 터널을 모형화한 수평관에서 실험적 연구를 수행하였다. 직경 100 mm 투명 아크릴관으로 제작된 수평관 내부를 흐르는 물에 공기를 주입하여 기포를 발생시키고 전기전도계를 이용하여 유속변화에 따른 관에서의 물-공기 혼합 이상흐름의 거동특성에 대해 살펴보았다. 실험결과 터널 계통 전반에서의 물-공기(이상류) 거동 특성을 파악할 수 있었다. 이를 통해 대심도터널 내부 공기에 대한 효과적인 제어로 흐름의 안정화 및 그에 따른 수리성능의 개선효과를 기대할 수 있으며, 도시지역의 집중강우로 인한 수방재 대응 기술개발을 위한 기초자료로 활용할 수 있을 것으로 기대된다.

  • PDF

Behavior of Closely-Spaced Tunnel According to Separation Distance Using Scaled Model Tests (축소모형실험을 통한 이격거리에 따른 근접터널의 거동)

  • Ahn, Hyun-Ho;Choi, Jung-In;Shim, Seong-Hyeon;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.5-16
    • /
    • 2008
  • Most of roadway tunnels have been constructed in the form of parallel twin tunnel in Korea. If parallel twin tunnel does not have a sufficient separation distance between tunnels, the problem of tunnel stability can occur. Generally, it is reported that tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced parallel twin tunnel using homogeneous material are performed and induced displacements are measured around the tunnel openings during excavation. The influence of separation distance between tunnels on the behavior of closely-spaced tunnel is investigated. The experimental results are expressed by the induced displacement vector and progress of crack during construction and at failure. The results show that based on the analysis of induced displacement at the crown during construction, the additional displacement of the preceding tunnel induced by the excavation of following tunnel decreases as the separation distance between twin tunnel increases until the center to center distance is two times of tunnel diameter. Beyond this point, however, the additional displacement has become stabilized.

Evaluation of Reducing Cross Section of the Partial Drainage Shield Tunnel Segment using the Model Experiments (축소모형실험을 통한 부분배수 쉴드터널의 세그먼트 단면 축소 가능성 평가)

  • Ma, Sang Joon;Lee, Young Sub;Kim, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.387-396
    • /
    • 2015
  • The existing shield tunnel has constructed in the concept of non-drainage uniformly, but the leak has become a problem in the construction and management. The Shield tunnel design allowed for the water and earth pressure bring about the increasing segment thickness and the construction costs. In order to improve these problems, the study of the partial drainage shield tunnel is in progress. In this study, th model experiment was performed to confirm the possibility of the partial drainage shield tunnel. And the water and earth pressure was measured in drainage and undrained condition. Based on the results of model experiments, the effect of water pressure reduction was confirmed by reviewed the structure stability of the real design case.

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF