• Title/Summary/Keyword: 모형 비교 분석

Search Result 5,533, Processing Time 0.026 seconds

The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations (PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가)

  • Kim, Jia;Hong, Gun Chul;Lee, Hyeok;Choi, Seong Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Purpose: In the PET/CT images, The SUV (standardized uptake value) enables the quantitative assessment according to the biological changes of organs as the index of distinction whether lesion is malignant or not. Therefore, It is too important to enter parameters correctly that affect to the SUV. The purpose of this study is to evaluate an allowable error range of SUV as measuring the difference of results according to input errors of Activity, Weight, uptake Time among the parameters. Materials and Methods: Three inserts, Hot, Teflon and Air, were situated in the 1994 NEMA Phantom. Phantom was filled with 27.3 MBq/mL of 18F-FDG. The ratio of hotspot area activity to background area activity was regulated as 4:1. After scanning, Image was re-reconstructed after incurring input errors in Activity, Weight, uptake Time parameters as ${\pm}5%$, 10%, 15%, 30%, 50% from original data. ROIs (region of interests) were set one in the each insert areas and four in the background areas. $SUV_{mean}$ and percentage differences were calculated and compared in each areas. Results: $SUV_{mean}$ of Hot. Teflon, Air and BKG (Background) areas of original images were 4.5, 0.02. 0.1 and 1.0. The min and max value of $SUV_{mean}$ according to change of Activity error were 3.0 and 9.0 in Hot, 0.01 and 0.04 in Teflon, 0.1 and 0.3 in Air, 0.6 and 2.0 in BKG areas. And percentage differences were equally from -33% to 100%. In case of Weight error showed $SUV_{mean}$ as 2.2 and 6.7 in Hot, 0.01 and 0.03 in Tefron, 0.09 and 0.28 in Air, 0.5 and 1.5 in BKG areas. And percentage differences were equally from -50% to 50% except Teflon area's percentage deference that was from -50% to 52%. In case of uptake Time error showed $SUV_{mean}$ as 3.8 and 5.3 in Hot, 0.01 and 0.02 in Teflon, 0.1 and 0.2 in Air, 0.8 and 1.2 in BKG areas. And percentage differences were equally from 17% to -14% in Hot and BKG areas. Teflon area's percentage difference was from -50% to 52% and Air area's one was from -12% to 20%. Conclusion: As shown in the results, It was applied within ${\pm}5%$ of Activity and Weight errors if the allowable error range was configured within 5%. So, The calibration of dose calibrator and weighing machine has to conduct within ${\pm}5%$ error range because they can affect to Activity and Weight rates. In case of Time error, it showed separate error ranges according to the type of inserts. It showed within 5% error when Hot and BKG areas error were within ${\pm}15%$. So we have to consider each time errors if we use more than two clocks included scanner's one during the examinations.

  • PDF

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.