Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.6
/
pp.2672-2679
/
2012
The study was done to provide basic data of medical quality evaluation after developing the comorbidity disease mortality measurement modeled on the severity-adjustment method of AMI. This study analyzed 699,701 cases of Hospital Discharge Injury Data of 2005 and 2008, provided by the Korea Centers for Disease Control and Prevention. We used logistic regression to compare the risk-adjustment model of the Charlson Comorbidity Index with the predictability and compatibility of our severity score model that is newly developed for calibration. The models severity method included age, sex, hospitalization path, PCI presence, CABG, and 12 variables of the comorbidity disease. Predictability of the newly developed severity models, which has statistical C level of 0.796(95%CI=0.771-0.821) is higher than Charlson Comorbidity Index. This proves that there are differences of mortality, prevalence rate by method of mortality model calibration. In the future, this study outcome should be utilized more to achieve an improvement of medical quality evaluation, and also models will be developed that are considered for clinical significance and statistical compatibility.
In this paper, we examine a portfolio selection model in which a safety-first investor maximizes expected return subject to a downside risk constraint. We use the Value-at-Risk as the downside risk measure. We exploit the fact that returns are fat-tailed, and use a semi-parametric method suggested by Jansen, Koedijk and de Vries(2000). We find a more realistic asset allocation than the one suggested by the literature based on the traditional mean-variance framework. For the robustness check, we provide empirical analyses using empirical quantiles. The results highlight that for optimal portfolio selection involving downside risks that are far in the tails of the distribution, our mean-VaR model with a fat-tailed distribution is superior.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1449-1466
/
2014
In this paper, we consider a hedge portfolio based on futures of underlying asset. A classical way to estimate a hedge ratio for a hedge portfolio of a spot and futures is a regression analysis. However, a regression analysis is not capable of reflecting long-run equilibrium between a spot and futures and volatility clustering in the conditional variance of financial time series. In order to overcome such defects, we analyzed KOSPI200 index and futures using VECM-CC-GARCH model and computed a hedge ratio from the estimated conditional covariance-variance matrix. In real data analysis, we compared a regression and VECM-CC-GARCH models in terms of hedge effectiveness based on variance, value at risk and expected shortfall of log-returns of hedge portfolio. The empirical results show that the multivariate GARCH models significantly outperform a regression analysis and improve hedging effectiveness in the period of high volatility.
Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.
We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.731-736
/
2005
현재 국내 주요 하천의 홍수예경보시스템 운영과 다목적댐의 홍수조절관리를 위하여 수문학적 모형의 하나인 저류함수모형(Storage Function Model)을 사용하고 있다. 저류함수모형은 산지가 많은 유역에 적합하도록 개발된 모형으로, 계산절차가 간편하고 홍수유출의 비선형성을 고려할 수 있는 방법이므로 선형모형보다 합리적이라고 알려져 있다. 그러나 저류함수모형을 실제 홍수유출현상에 적용하는데 있어 매개변수를 결정하는 것이 매우 어렵다. 현재 매개변수들을 결정할 수 있는 객관적이고 합리적인 방법이 제시되어 있지 않기 때문에 모형의 매개변수를 결정할 때 경험식을 이용하거나 수문기술자의 판단에 의한 보정에 의존하고 있다. 따라서, 본 논문에서는 홍수통제소에서 사용하고 있는 저류함수 모형의 대표(평균) 매개변수와 경험식, 시행착오법(trial & error method) 및 최적화기법(optimization technique) 중에 Rosenbrock 방법을 이용하여 매개변수를 산정하고 이들을 비교 분석하고자 한다.
Proceedings of the Korean Statistical Society Conference
/
2004.11a
/
pp.117-121
/
2004
분석용 정밀 워게임 시뮬레이션 모형에서는 '모형운영 결과와 실제(또는 실험) 결과를 비교' 하는 통상적인 타당성 척도의 적용이 불가능함에 따라 워게임모형 운영환경에 적합한 새로운 개념의 타당성 척도로서 VEA(Validity for Exploratory Analysis), VSA(Validity subject to Assumption) 등의 개념을 도입하고 이를 탐색적으로 점검하는 방안을 제시한다. 분석용 워게임모형 활용에 있어 또 하나의 걸림돌은 1)시나리오 및 상황의 가변성, 2)무기체계 및 장비 성능에 대한 불확실성, 3)묘사범위 제한 및 논리의 부정확성으로 인한 오류 등으로 엄청난 불확실성(uncertainty)을 기본적으로 내포함에 따라 구체적 의사결정을 위한 종합적 결론 도출이 어렵다는 점이다. 본 연구에서는 이를 메타모델(Meta model) 즉 워게임모형 입출력 자료의 관계를 묘사한 통계적 모형을 구축하고 이를 기반으로 다양한 불확실성 하에서 관심변수간의 관계를 종합적으로 도출하고자 하는 '관련공간모의(Relevant Simulation)' 방안을 제시한다. 이와 같은 방안들은 SVAP(Statistical Validation and Aggregation Procedure)라는 하나의 종합된 절차로서 제시된다.
국내 도시교통에서 도시고속도로가 차지하는 비중은 급증하고 있으나 이의 효율적 인 운영은 아직 초보수준인 실정이다. 도시고속도로의 운영전략이나 기하구조 설계대안을 개발·분석·평가하는데 시뮬레이션 모형을 활용하는 것은 필수적이나 외국에서 개발된 모형 을 국내에 적용하는 데에는 많은 제약이 따르고 있다. 따라서 본 연구는 국내 현실에 적합 한 도시고속도로 교통류 시뮬레이션 모형을 개발하려는데 그 목적이 있으며 연속 교통류 모 형의 개발, 모수추정 방법의 제시, 컴퓨터 코딩, 모형평가의 세부작업이 수행되었다. URFSIM-1은 각 구간에서 통행목적지별 차량 수를 추적할 수 있는 통행수요모형 기능에 구 간내 이동을 동적으로 기술할 수 있는 거시적 교통류 모형을 결합한 것을 기본 교통류 모형 으로 채택하고 있다. 비선형 최소 자승법에 의해 교통류 모형 모수와 O-D 모수를 추정하는 방법이 제시되었다. 마지막으로 유고상황을 가상한 정성분석과 미국 도시고속도로에서 수집 한 현장자료를 이용한 모형의 평가를 시행하였다.
본 연구의 목적은 '96년말 서울시에서 실시한 가구통행조사를 이용하여 서울시 수단선택모형을 구축하고 그 예측결과를 남산 혼잡통행료 전후저사자료와 비교하여 보다 구체적으로 그 정확성을 검증한 뒤 향후 서울시 교통수요관리 방안의 시행에 따른 수단선택변화 예측의 기본 모형으로 활용하는데 있다. 5가지의 대안모형의 분석결과 통행비용변수(승용차의 경유 주차요금포함)와 총통행시간변수(OVTT와 IVTT의 합), 승용차, 지하철, 택시상수로 구성된 모형이 최적모형으로 분석되었다. 이모형에 의한 시간가치는 9,395원, 승용차의 비용탄력성은-0.6767로서 기존 연구결과의 범위 내에 속한 것으로 나타났다. 최적모형을 이용하여 승용차통행비용이 증가한 경우를 모사분석결과 남산1,3호 터널 혼잡통행료 징수효과와 유사하게 승용차 분담율이 13% 가까이 감소한 것으로 나타나서 모형의 현실적합성도 비교적 높은 것으로 판명되었다. 향후 본 연구에서 선정된 최적수단선택모형을 통행배정모형과 결합하여 다양한 교통수요관리 방안에 따른 효과를 예측하는데 활용하면 서울과 같은 대도시의 단기적 교통관리의 수준을 한 단계 높이는데 기여할 것으로 판단된다.
In this study, we analyzed probability distribution of EMCs (Event Mean Concentration) of COD, TOC, T-N, T-P and SS from rice paddy fields and compared the mean values of observed EMCs and the median values of estimated EMCs ($EMC_{50}$) through probability distribution. The field monitoring was conducted during a period of four crop-years (from May 1, 2008, to September 30. 2011) in a rice cultivation area located in Emda-myun, Hampyeong gun, Jeollanam-do, Korea. Four probability distributions such as Normal, Log-normal, Gamma, and Weibull distribution were used to fit values of EMCs from rice paddy fields. Our results showed that the applicable probability distributions were Normal, Log-normal, and Gamma distribution for COD, and Normal, Log- Normal, Gamma and Weibull distribution for T-N, and Log-normal, Gamma and Weibull distribution for T-P and TOC, and Log-normal and Gamma distribution for SS. Log-normal and Gamma distributions were acceptable for EMCs of all water quality constituents(COD, TOC, T-N, T-P and SS). Meanwhile, mean value of observed COD was similar to median value estimated by the gamma distribution, and TOC, T-N, T-P, and SS were similar to median value estimated by log-normal distribution, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.