• Title/Summary/Keyword: 모형적합도

Search Result 3,279, Processing Time 0.028 seconds

The Design of a Place Branding Model for Public Libraries and Its Application to Creating a Public Library Brand Image (공공도서관을 위한 장소브랜딩모형의 설계와 브랜드이미지의 창조)

  • Yu Jeong Kang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.217-246
    • /
    • 2024
  • In this study, a place branding model for public library was designed to revitalize public libraries' user visits by modifying and extending the Cai(2002)'s Place Branding Model. By applying this model, an example of creating a brand image of a public library was presented, and it was verified that this example is suitable as a brand image. To this end, literature research on the place branding models and brand marketing was conducted, and the types and contents of marketing suitable for the place branding model of public library were founded. And to verify that the example of the public library's brand image created by applying this model is suitable as a brand image, A survey of user perception was conducted on the brand image and brand identity of the applied library for this model, and the results of the survey were used to analyze the correlation and simple regression between these two variables. In this way, this study is meaningful in increasing the realization and real potential of place branding for promoting public libraries' user visits through the design and application of a conceptual model that embodies the place branding of public library.

Performance Analysis of Volatility Models for Estimating Portfolio Value at Risk (포트폴리오 VaR 측정을 위한 변동성 모형의 성과분석)

  • Yeo, Sung Chil;Li, Zhaojing
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.541-559
    • /
    • 2015
  • VaR is now widely used as an important tool to evaluate and manage financial risks. In particular, it is important to select an appropriate volatility model for the rate of return of financial assets. In this study, both univariate and multivariate models are considered to evaluate VaR of the portfolio composed of KOSPI, Hang-Seng, Nikkei indexes, and their performances are compared through back testing techniques. Overall, multivariate models are shown to be more appropriate than univariate models to estimate the portfolio VaR, in particular DCC and ADCC models are shown to be more superior than others.

Forecasts of electricity consumption in an industry building (광, 공업용 건물의 전기 사용량에 대한 시계열 분석)

  • Kim, Minah;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.

Validation Comparison of Credit Rating Models for Categorized Financial Data (범주형 재무자료에 대한 신용평가모형 검증 비교)

  • Hong, Chong-Sun;Lee, Chang-Hyuk;Kim, Ji-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.615-631
    • /
    • 2008
  • Current credit evaluation models based on only financial data except non-financial data are used continuous data and produce credit scores for the ranking. In this work, some problems of the credit evaluation models based on transformed continuous financial data are discussed and we propose improved credit evaluation models based on categorized financial data. After analyzing and comparing goodness-of-fit tests of two models, the availability of the credit evaluation models for categorized financial data is explained.

A Study on the Credential System of Librarian in Korea (사서자격제도 개선안 연구)

  • Jeong, Dong-Youl
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.2
    • /
    • pp.5-29
    • /
    • 2007
  • The purpose of this study is to suggest alternative credential system of librarian in Korea. For this purpose, the study analyzes various aspects of credential system in order to find out characteristics, strengths, and weaknesses. The data used in this study are drawn from current situations and problems analysis, critical literature review case study of six countries, and questionnaire survey analysis. Four different kinds of model are suggested. Those are 'Internal Competency Model', 'Minimum Credits Model', ‘Licence Examination Model', 'Graduate School Model'. This study also suggests further research to develop more adequate credential system of librarian in Korea.

Prediction of K-league soccer scores using bivariate Poisson distributions (이변량 포아송분포를 이용한 K-리그 골 점수의 예측)

  • Lee, Jang Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1221-1229
    • /
    • 2014
  • In this paper we choose the best model among several bivariate Poisson models on Korean soccer data. The models considered allow for correlation between the number of goals of two competing teams. We use an R package called bivpois for bivariate Poisson regression models and the data of K-league for season 1983-2012. Finally we conclude that the best fitted model supported by the AIC and BIC is the bivariate Poisson model with constant covariance. The zero and diagonal inflated models did not improve the model fit. The model can be used to examine home-away effect, goodness of fit, attack and defense parameters.

Performance Evaluation between Models for Smoker Classification Based on Health Examination Data (건강검진 데이터 기반 흡연자 분류를 위한 모형별 성능 분석)

  • Yun, Jisun;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.648-651
    • /
    • 2018
  • 흡연여부를 감별하는 지표가 있지만 반감기 등 여러 가지 요인에 따라 결과가 변한다는 단점이 있다. 그렇기 때문에 흡연여부 감별 시 외부요인에 영향을 덜 받는 지표가 필요하게 되었다. 그래서 흡연 여부 감별하는데 적합한 모형을 찾아 외부요인에 영향이 적은 지표를 개발에 도움이 될 것을 기대하며 연구를 진행하였다. 실험은 국민건강보험공단에서 제공한 건강검진정보데이터를 기반으로, SVM, Logistic Regression, KNN 등의 머신러닝 모델을 이용하여 흡연 여부를 감별하는 것을 진행한다. 이 실험은 속성에 따른 모형의 성능변화와 학습데이터 수에 따른 모형의 성능변화에 대한 2가지 측면에서 모델의 성능을 측정하였다. 모델의 평가는 정확도(accuracy), 정밀도(precision), 재현율(recall), 조화 평균(f1-score)으로 진행하였으며, 약 70퍼센트 정도의 정확도와, 60퍼센트 대의 재현율을 보인다. 실험 결과, SVM이 속성에 따른 모형의 성능 변화 실험에서는 63%의 재현율, 학습데이터 수에 따른 성능 변화 실험에서는 68%의 재현율을 보여, 흡연자 판별에 가장 좋은 성능을 보였다. 또한 재현율을 기준으로 실험 차수별로 가장 좋은 성능을 보인 모델과 가장 저조한 성능을 보인 모델의 차이를 비교한 결과, '속성에 따른 모형의 성능 변화 실험'에서는 최고 36%의 차이를 보였으며, '학습데이터 수에 따른 성능 변화 실험'에서 최고 42%의 차이를 보여 주었다. 이에 판별을 위한 속성도 중요하지만, 적합한 모형 선택 또한 중요하다는 것을 확인하였다.

Regionalization of Rainfall-Runoff Model Based on Relationship Between Model Parameters and Watershed Characteristics (매개변수와 유역특성인자 사이의 상호연관성을 고려한 강우-유출모형 지역화)

  • Kim, Jin-Guk;Uranchimeg, Sumiya;Kim, Tae-Jeong;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.293-293
    • /
    • 2021
  • 자연유량이란 인위적 행위에 의한 하천의 유량 변화가 없는 개발되지 않은 상태의 하천유량을 말하며, 실제 유량을 측정하거나 관측자료를 활용한 장기유출모형을 통해 산정할 수 있다. 미계측 유역에 대한 강우-유출 모형 구축시, 무엇보다 실제 미계측유역에 적용시 나타날 수 있는 문제점을 최소화할 수 있는 방향으로 모형 개발이 이루어지는 것이 필요하다. 강우-유출 모형 매개변수의 수가 많아질수록 과적합(over-fitting)의 발생 소지가 증가하게 되며, 지역화 모형 구축시 불확실성을 더욱 가중시키게 된다. 이러한 이유로, 모형의 검정보다는 검증에 초점이 맞춰져 있어야 하며, 더불어 사용되는 강우-유출 모형의 매개변수가 적어야 한다. 본 연구에서는 대표 강우-유출모형의 선정시 여러 평가 기준 중 예측의 정확성 측면에서 통계적 지표를 통해 모형의 수행능력에 중점을 두었으며, 적은 개수의 매개변수를 갖음에도 불구하고 상대적 우수한 모의결과를 제공하는 GR4J(Ge'nie Rural a 4 parame tres Journalier)모형을 최적 유출모형으로 선정하여 댐 상류유역에 대한 자연유량 재현성능을 평가하였다. 최종적으로 강우-유출모형의 최적매개변수와 유역특성인자 사이의 상호연관성을 고려해 매개변수를 지역화하기 위하여, 본 연구에서는 두 가지 이상의 변량에 대한 상관성을 효과적으로 재현하는데 효과적이며, 자유로운 주변확률분포 선택과 결합확률분포의 추정이 용이한 장점이 있는 Copula 함수를 활용하였다. 제시된 방법론에 대한 적합성을 평가하기 위해 교차검증 관점에서 지역화된 매개변수의 적합성을 검토하였으며, 본 연구에서 도출된 결과는 유역특성에 따른 미계측유역의 자연유량 산정시 지역 매개변수를 강우-유출모형에 활용함으로써 신뢰성 있는 자연유량 산정 결과를 제공할 수 있을 것으로 판단된다.

  • PDF

Developing the Traffic Accident Prediction Model using Classification And Regression Tree Analysis (CART분석을 이용한 교통사고예측모형의 개발)

  • Lee, Jae-Myung;Kim, Tae-Ho;Lee, Yong-Taeck;Won, Jai-Mu
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. The accurate traffic accident prediction model requires not only understanding of the factors that cause the accident but also having the transferability of the model. So, this paper suggest the traffic accident diagram using CART(Classification And Regression Tree) analysis, developed Model is compared with the existing accident prediction models in order to test the goodness of fit. The results of this study are summarized below. First, traffic accident prediction model using CART analysis is developed. Second, distance(D), pedestrian shoulder(m) and traffic volume among the geometrical factors are the most influential to the traffic accident. Third. CART analysis model show high predictability in comparative analysis between models. This study suggest the basic ideas to evaluate the investment priority for the road design and improvement projects of the traffic accident blackspots.

  • PDF

Variable Selection in Clustering by Recursive Fit of Normal Distribution-based Salient Mixture Model (정규분포기반 두각 혼합모형의 순환적 적합을 이용한 군집분석에서의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.821-834
    • /
    • 2013
  • Law et al. (2004) proposed a normal distribution based salient mixture model for variable selection in clustering. However, this model has substantial problems such as the unidentifiability of components an the inaccurate selection of informative variables in the case of a small cluster size. We propose an alternative method to overcome problems and demonstrate a good performance through experiments on simulated data and real data.