Journal of the Korean Data and Information Science Society
/
제7권2호
/
pp.247-256
/
1996
본 논문은 깁스 표본 기법을 이용하여 Demster et al.(1981)에 의해 소개된 Field Mice자료를 분석하기 위하여 베이지안 계층적 모형을 적용시켜 보았다. Jeffrey의 사전확률을 이용한 사후 평균을 깁스 표본 기법을 이용하여 구하였고, 이로 부터 얻은 베이지안 추정량을 최소 자승 추정량, EM알고리즘을 이용한 랜덤 효과를 포함한 가능도함수에 대한 최대 가능도 추정량(MLR)과 비교하였다.
This study explored the contents of practical knowledge about educational planning in early childhood curriculum as constructed by kindergarten teachers at early career stages and then developed a collaborative model of educational planning. Subjects were 6 teachers at early career stages. Using the ethnographic method, data were collected by in-depth interviews. Research outcomes were : (1) teachers specifically worked on 'difficulties in adapting to the teaching job', 'age of children that the teacher cares for', 'integration of theory and practice', and 'variety of actual teaching situations.' (2) A model for collaborative educational planning was constructed on the basis of review of the literature on teachers' knowledge, educational planning for early childhood curriculum, and learning of community.
의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항 인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.
베이지안 확률 모형은 문서 분류에서 널리 사용되는 이론이다. 그러나, 실제로 베이지안 이론에 기초하여 만들어진 시스템은 처리 시간이 많이 소요된다는 단점을 가지고 있다. 이 논문에서는 문서 분류 작업에 있어 기존의 베이지안 모형을 구현함과 동시에 여러 가지 방법을 통해 시간적인 측면을 개선한 시스템을 구현하였다.
일반적으로 자료의 효과 연속형인 경우 분산분석과 이산형인 경우 분할표 카이제곱 검정을 통계적 분석방법으로 사용한다. 다차원의 자료에서는 계층적 구조의 분석이 요구되어지며 자료간의 인과관계를 나타내기 위해 통계적 선형모형을 채택하여 분석한다. 선형모형의 구조에서는 자료의 정규성이 요구되어지며 일부 자료에서는 비 선형모형을 채택할 수도 있다. 특히, 설문조사 자료 구조는 문항의 특성상 이산형 자료의 형태가 많아 모형의 조건에 만족하지 않는 경우가 종종 발생한다. 자료구조의 차원이 높아질수록 인과관계, 교호작용, 연관성분석 등에 다차원 범주형 자료 분석 방법을 사용한다. 본 논문에서는 확률분포의 계산을 이용한 베이지안 네트워크 모형이 범주형 자료 분석에서 분석절차를 줄이고 교호작용 및 인과관계를 분석할 수 있다는 것을 제시하였다.
최근 도시물순환 복원 및 치 이수효과 증대를 위해 저영향개발기법(Low Impact Development) 연구가 활발하게 진행 중이다. 하지만 대부분이 수치모델을 활용한 설계프로그램 개발에 대한 연구에 집중되어 있는 실정이며, 이러한 프로그램을 활용한 설계 시 최적의 매개변수 결정에 한계가 있다. 이러한 이유로 본 연구에서는 건축형 LID 요소 중 하나인 식생여과장치(Planter Box)의 모형실험을 통해 프로그램 모의에 필요한 매개변수를 추정하고, 모의를 수행한 후 모형실험 결과와 프로그램 모의 결과를 비교하여 최종적으로 식생여과장치의 설계 매개변수를 산정하고자 한다. 식생여과장치의 모형실험을 위하여 가로 1.5m, 세로 1.5m, 높이 1.5m로 실험 장치를 제작하였으며, 강우-유출수 실험 전 시료의 침투율, 함수비 등을 체크한 후 지속시간 1시간의 재현빈도 5년, 10년, 20년, 50년에 해당하는 강우강도에 대해 실험을 수행하였다. 실험결과로 나타난 자료는 SWMM 모형과 비교분석해 모형에 적용된 매개변수의 적합성을 분석하였으며, 재현빈도 5년, 10년, 20년의 경우 $R^2$ 값이 0.88~0.97로 실험 값과 모의 값의 연관성이 높게 나타났으며, 재현 빈도 50년의 경우 0.7835로 비교적 연관성이 낮게 나타났다.
Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.627-641
/
2012
본 연구는 다차원 분할표 형태로 정리된 범주형 자료가 결측치나 무응답을 가지고 있을 때 주어진 자료를 가장 잘 설명하고 예측의 정확도를 높일 수 있는 모형의 추정과 모형의 선택 문제를 다루었다. 무시할 수 없는 무응답 (non-ignorable non-response)체계하에서 최대우도 추정에서 발생할 수 있는 변방값 문제를 해결하기 위하여 계층적 베이지안 모형을 고려하였다. 또한 모형 적도를 높이기 위한 변수 조합을 찾는 모형 선택의 문제를 함께 다루었다. 베이지안 접근하에서 모형 선택의 문제를 다루기 위하여 베이즈 인자 (Bayes factor)를 모형 선택의 기준으로 이용하였다. 제시된 방법은 2004년 실시된 우리나라 국회의원 선거를 앞두고 수행된 여론조사 데이터를 이용하여 실증분석을 수행하였다. 분석결과 무시할 수 없는 무응답 체계하에서 설명변수로 투표참여여부를 이용하는 것이 가장 적합한 모형으로 판명되었다.
본 연구는 예비교사를 위한 디자인싱킹 기반 캡스톤디자인 교수설계모형 개발을 목적으로 실시되었다. 이를 위해, 디자인싱킹 및 캡스톤디자인과 협력학습 등 학습자 중심 수업 관련 문헌분석을 실시하여 예비교사 교육을 위한 디자인싱킹 및 캡스톤디자인의 수업 설계 원리 및 수업모형을 탐색하고 핵심요소를 도출하였다. 이후 문헌분석을 통해 도출된 핵심 요소를 바탕으로 예비교사를 위한 디자인싱킹 기반 캡스톤디자인 교수설 계모형 및 교수·학습모형을 개발하였다. 개발된 교수설계모형과 교수학습모형은 디자인싱킹, 캡스톤디자인 외 교육관련 전문가 6명을 대상으로 전문가 타당화를 포함한 총 3회의 델파이 조사를 실시하여 수정 및 보완 후 최종안을 확정하였다. 본 연구의 주요 결과인 최종 교수설계모형에는 학습자 및 학습 환경 분석, 캡스톤디자인을 위한 산학협력기관 운영 협의, 수업 단계 및 전략, 평가 등 수업 전반에 대한 내용을 포함하고 있다. 교수학습모형 최종안의 경우 세부 단계별 교수자 활동, 학습자 활동에 대한 가이드라인을 포함하고 있다.
본 논문에서는 마코프 이항 회귀 모형의 시차가 알려져 있거나 그렇지 않은 경우일 때, t-링크 함수를 갖는 종단적 마코프 이항 회귀 모형을 제시한다. 일반적으로, 이항 회귀 모형에서는 로직 모형이나 프로빗 모형이 주로 사용된다. t-링크 함수는 t 분포가 자유도가 커질수록 정규분포로 근사하기 때문에 프로빗 모형을 대신 더 많은 유연성을 위해 사용될 수 있다. 게다가 마코프 회귀모형은 종단 자료에 대해 사용될 수 있다. 우리는 마코프 회귀 모형의 시차를 결정하기 위해 베이지안 방법을 제시하고자 한다. 특히, 각 모델의 차수에 대해 알고 있는 경우에는 DIC를 기준으로 모델 비교를 실시하였다. 모델의 차수에 대해 모르는 경우에는 가능한 모델들의 사후 확률을 이용하였다. 복잡한 베이지안 계산을 해결하기 위하여 Albert와 Chib (1993), Kuo와 Mallick (1998)과 Erkanli 등 (2001)의 방법을 이용하여 모델을 재설정하였다. 제안하는 방법은 시뮬레이션 데이터와 Somer 등 (1984)에 의해 조사된 인도네시아 어린이 종단 데이터에 적용했다. 마코프 이항 회귀모형의 순서에 대해서 아는 경우와 모르는 경우를 각각 가정하여 최적의 모델을 알아보기 위해 MCMC 방법을 사용하였다. 또한, 매트로폴리스 해스팅 알고리즘의 수렴성을 점검하기 위해 Gelman과 Rubin의 진단을 이용했다.
집중호우의 특성을 이해하는 것은 수문관리 및 재해방재 등에서 매우 중요하다. 특히 반환주기는 이러한 집중호우의 특성을 나타내는 측정치로 자주 사용된다. 본 논문에서는 베이지안 계층적 모형을 이용하여 강우의 반환주기에 대한 공간구조를 분석하였다. 먼저 국내 62개 지점에서 측정한 강우 강도을 기초로 하여 연간 일일 최대강우량과 특정한 수준을 초과하는 강우량에 대해서 generalized extreme value(GEV)와 generalized Pareto distribution(GPD)를 각각 가정하여 추정하였다. 집중호우 반환주기에 대한 공간구조는 이 GEV 분포와 GPD 분포의 모수에 공간구조를 가지는 다변량 정규분포를 이용하여 설명하였다. 제안된 모형을 국내 76개 지역에서 39년간 측정된 일별 강우량 관측자료에 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.