• Title/Summary/Keyword: 모터 특성

Search Result 1,115, Processing Time 0.024 seconds

Design and implementation of BLDC motor drive logic using SVPWM method with FPGA (FPGA를 활용한 SVPWM방식의 정현파 BLDC 모터 구동 로직 설계 및 구현)

  • Jeon, Byeong-chan;Park, Won-Ki;Lee, Sung-chul;Lee, Hyun-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.652-654
    • /
    • 2016
  • This paper shows the Design and implementation of sinusoidal BLDC motor drive logic using SVPWM method with FPGA. Sinusoidal BLDC motor driver logic consists of sine-wave PWM generator, dead-time and lead angle control logic. PWM generator logic is designed using SVPWM method for increase of 15.5% linear domain than general sine-wave PWM. This logic is verified and implemented using Spartan-6 FPGA Board. Test results show that THD(Total Harmonic Distortion) of motor-driving current is 19.2% and rotor position resolution is 1.6 degree.

  • PDF

Analysis of Inverter Losses according to Switching Frequency Using Electric Motor for Aircraft (스위칭 주파수에 따른 전기 추진 항공기용 인버터 손실 분석)

  • Koo, Bon-soo;Jo, Seong-hyeon;Choi, In-ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Electric propulsion aircraft are being actively researched in the aviation field in recent years to solve environmental and noise problems caused by existing gas turbine engine. In particular, research on a thrust motor as a core component of an electric power propulsion system and an inverter for driving it is actively being conducted. In this paper, a motor with high specific power is selected to determine characteristics of aircraft that are sensitive to weight and volume. Power loss of the inverter is then simulated. In the simulation, the selected motor and power device were modeled using PSIM, a power electronics analysis tool. Inverter power loss according to switching frequency was then analyzed.

Modeling and Detent Torque Hormonic Analysis of Hybrid Type Step Motor (하이브리드형 스텝모터의 모델링 및 디텐트 토크 고조파 분석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.14-21
    • /
    • 2002
  • This paper did the study target for modeling, characteristics analysis and harmonic reduce with the detent torque of a 4 phase and 5 phase hybrid type step motor. For this, it was attempted to derive the mathematical modeling and used the permeance method for flux field analysis. Through this analysis result, this paper acquired the detent torque of this model. To compare the characteristics analysis of phase difference with two motors structure it have obtained to derive the operating detent torque with this model. Here, 5 phase motor has known the harmonic reduce of detail torque compare with 4 phase motor. Also, that has showed to improved the step response. The analysis result has represent the effect that a fundamental component of the permeance distribution produces the average torque and that harmonic components produce the ripple torque.

Driving Characteristic of The Thin Type Ultrasonic Motor using Microcontroller (Microcontroller를 이용한 박형 초음파모터의 구동특성)

  • Jeong, Seong-Su;Jun, Ho-Ik;Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.201-201
    • /
    • 2008
  • 박형초음파모터의 구조는 그림 1(a) 와 같이 크로스형태의 앓은 스테이터에 윗면과 아랫면에 각각 8 개의 압전세라믹이 부착된 형태이다. 압전세라믹의 분극방향은 로터와 접촉하는 스테이터의 A, B, C, D 네 개의 타점에서 순차적인 타원변위가 생성되도록 결정된다. 유한요소해석프로그램인 ATILA 5.2.4를 사용하여 최적설계를 한 결과 폭 3[mm], 길이 18[mm], 두께 1.8[mm], Brass 재질, Mid surface clamp 조건에서 입력전압 18[Vrms] 일 때 0.3[${\mu}m$]의 변위를 보였다. 최적설계된 모델을 제작하였고, 정확한 실험결과를 얻기 위해서 푸쉬풀게이지, x-y스테이지, rpm 메타, 토크게이지를 이용하여 실험테이블을 구성하였다. 그림 1(b) 는 마이크로컨트롤러를 이용한 구동 드라이버를 보여준다. 한 주기에서 1/4분주의 순차적인 네 개의 구형파를 생성하고, 이를 push-pull회로를 동하여 90도의 위상차가 나는 정현파를 생성하여 초음파 모터의 구동전원으로 사용한다. 엔코더와 AD 컨버터를 이용하여 정속도 운전을 위한 피드백 제어가 된다. 제안된 구동드라이버를 이용하여 측정한 결과, 구동 주파수 88.6[kHz], 입력전압 [40Vrms], preload 0.2 [N]에서 130 [rmp] 의 속도와 25 [gfcm] 의 토크특성을 보였다. 압력전압을 증가시킬수록 속도는 선형적인 증가를 보였고, 토크는 이와 반대로 감소하는 특성을 보였다. 피드백 제어회로가 없는 경우에는 preload 변화에 따른 극심한 속도 변화를 보였고, 피드백 제어를 하였을 경우에는 0.2~0.4[N]의 범위에서 정속도 운전이 가능함을 확인하였다. 기존의 주파수발생기와 파워 엠프를 이용한 구동장비와의 특성비교에서도 큰 차이를 보이지 않았으며, 장시간의 운전에도 안정적인 구동이 가능함을 확인하였다.

  • PDF

A Study on the Control Characteristics of Thrust Vector Control Actuation System for Movable Nozzle of Solid Motor (고체모터 가동노즐 추력벡터제어용 구동장치시스템의 제어특성 연구)

  • Min, Byeong-Joo;Lee, Hee-Joong;Park, Moon-Su;Choi, Hyung-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The motion of flexseal bearing for movable nozzle has inherent nonlinear characteristics due to floating rotational center and compression by combustion pressure of solid motor. To perform precise attitude control in spite of these characteristics, the TVC actuation system requires counter potentiometer as an extra position feedback sensor of movable nozzle to form a compensated control loop. The prototype TVC actuation system, test equipments and compensated controller are newly designed, manufactured and tested in consideration of counter potentiometer. On the basis of integration test, the inherent characteristics of movable nozzle and control characteristics of its TVC actuation system are analyzed and summarized in this paper.

Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools (공작기계용 40,000rpm 고속주축의 정·동적 해석과 최적설계에 관한 연구)

  • Kim, Dong Hyeon;Lee, Choon Man;Choi, Hyun Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.105-111
    • /
    • 2013
  • The spindle is the main component in machine tools. The static and dynamic characteristics of the spindle directly affect the machining accuracy of workpieces. The characteristics of the spindle depend on the shaft size, bearing span, built-in motor location, and so on. Therefore, the appropriate selection of these parameters is important to improve the spindle characteristics. This paper presents the analysis of the static and dynamic characteristics and optimization design of a 40,000-rpm high-speed spindle. Statistical analysis for optimization and finite element analysis were performed. This study uses the response surface method to optimize the objective function and design factors. The targets are the natural frequency and displacement. The design factors are the shaft length, shaft diameter, bearing span, and motor location. The optimized design provides better results than the initial model, and these results are expected to improve the static and dynamic characteristics of the spindle.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

A Basic Study on Miniature Size Electrostatic Induction Meter (소형(小型) 정전(靜電) 유도형(誘導型) 모터의 기초(基礎) 연구(硏究))

  • Moon, Jae-Duk;Lee, Dong-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • A miniature size electrostatic induction motor has been fabricated and studied with emphasis on the role of the surface resistivity, the relative dielectric constant and the charge relaxation time constant of the rotor surface materials and the rotor liner materials, which, however, control the surface charge induction and relaxation on the rotor material surface and the field intensity between the rotor and the stator of the motor. It is found that the surface resistivity and/or the relative dielectric constant, and the charge relaxation time constant of the rotor surface material enfluenced significantly to motor speed controlled by the surface charge induction and relaxation on the rotor surface depending on the applied voltage and/or frequency changing. The resistivity of the rotor liner material is also found to be effected to the motor speed greatly by control of the field intensity between the rotor and the stator and of the surface charge distribution of the induced charge on the rotor. As a result, a maximum no load rotor speed of the motor tested was about 5500 rpm at the applied voltage of 4.5 kV and the frequency of 220 Hz for the case of the rotor surface material of $BaTiO_{3}$ 80% in the resin binder layered on the copper-foil rotor liner material.

  • PDF

A Study of Control for 3 Phase BLDC Motor using Control Methodology of DC Motor (직류전동기 제어기법을 적용한 3상 BLDC 모터 제어에 관한 연구)

  • Jin-Man Kim;Taek-Kun Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.704-711
    • /
    • 2023
  • This paper discusses the control method of BLDC(Brushless Direct Current) motor that has similar electrical characteristics with DC motor but has improved its lifespan and reliability. The BLDC motor can improve durability and speed stability by using rotor position information to eliminate commutators that require mechanical contact with DC motors. In this study, a controller for a DC motor was designed based on the fact that the current in the windings of a BLDC motor is a square-wave current like the current flowing in the armature of a DC motor. Next, the designed controller was applied to a 3-phase BLDC motor to confirm the effectiveness of the controller. In detail, a single-phase DC motor with electrical parameter values of a three-phase BLDC motor was modeled and a PI controller for motor speed control was designed by applying the root locus method to the derived system. The speed control simulation of the DC motor was performed to confirm the validity of the controller, and the same controller was applied to the speed control of the 3-phase BLDC motor implemented in MATLAB. From the simulation, similar results of the DC motor were obtained in the 3 phase BLDC motor and confirmed the usefulness of the proposed control scheme.

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.