• Title/Summary/Keyword: 모의 정확도 향상

Search Result 749, Processing Time 0.033 seconds

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.

Software Implementation of Welding Bead Defect Detection using Sensor and Image Data (센서 및 영상데이터를 이용한 용접 비드 불량검사 소프트웨어 구현)

  • Lee, Jae Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.185-192
    • /
    • 2021
  • Various methods have been proposed to determine the defect detection of welding bead, and recently sensor data and image data inspection have been steadily announced. There are advantages that sensor data inspection is highly accurate, and two-dimensional-based image data inspection is able to determine the position of the welding bead. However, when analyzing only with sensor data, it is difficult to determine whether the welding has been performed at the correct position. On the other hand, the image data inspection does not have high accuracy due to noise and measurement errors. In this paper, we propose a method that can complement the shortcomings of each inspection method and increase its advantages to improve accuracy and speed up inspection by fusing sensor data inspection which are average current, average volt, and mixed gas data, and image data inspection methods and is implemented as software. In addition, it is intended to allow users to conveniently and intuitively analyze and grasp the results by performing analysis using a graphical user interface(GUI) and checking the data and inspection results used for the inspection. Sensor inspection is performed using the characteristics of each sensor data, and image data is inspected by applying a morphology geodesic active contour algorithm. The experimental results showed 98% accuracy, and when performing the inspection on the four image data, and sensor data the inspection time was about 1.9 seconds, indicating the performance of software that can be used as a real-time inspector in the welding process.

A Study on Prediction of PM2.5 Concentration Using DNN (Deep Neural Network를 활용한 초미세먼지 농도 예측에 관한 연구)

  • Choi, Inho;Lee, Wonyoung;Eun, Beomjin;Heo, Jeongsook;Chang, Kwang-Hyeon;Oh, Jongmin
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.2
    • /
    • pp.83-94
    • /
    • 2022
  • In this study, DNN-based models were learned using air quality determination data for 2017, 2019, and 2020 provided by the National Measurement Network (Air Korea), and this models evaluated using data from 2016 and 2018. Based on Pearson correlation coefficient 0.2, four items (SO2, CO, NO2, PM10) were initially modeled as independent variables. In order to improve the accuracy of prediction, monthly independent modeling was carried out. The error was calculated by RMSE (Root Mean Square Error) method, and the initial model of RMSE was 5.78, which was about 46% betterthan the national moving average modelresult (10.77). In addition, the performance improvement of the independent monthly model was observed in months other than November compared to the initial model. Therefore, this study confirms that DNN modeling was effective in predicting PM2.5 concentrations based on air pollutants concentrations, and that the learning performance of the model could be improved by selecting additional independent variables.

Overseas Address Data Quality Verification Technique using Artificial Intelligence Reflecting the Characteristics of Administrative System (국가별 행정체계 특성을 반영한 인공지능 활용 해외 주소데이터 품질검증 기법)

  • Jin-Sil Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In the global era, the importance of imported food safety management is increasing. Address information of overseas food companies is key information for imported food safety management, and must be verified for prompt response and follow-up management in the event of a food risk. However, because each country's address system is different, one verification system cannot verify the addresses of all countries. Also, the purpose of address verification may be different depending on the field used. In this paper, we deal with the problem of classifying a given overseas food business address into the administrative district level of the country. This is because, in the event of harm to imported food, it is necessary to find the administrative district level from the address of the relevant company, and based on this trace the food distribution route or take measures to ban imports. However, in some countries the administrative district level name is omitted from the address, and the same place name is used repeatedly in several administrative district levels, so it is not easy to accurately classify the administrative district level from the address. In this study we propose a deep learning-based administrative district level classification model suitable for this case, and verify the actual address data of overseas food companies. Specifically, a method of training using a label powerset in a multi-label classification model is used. To verify the proposed method, the accuracy was verified for the addresses of overseas manufacturing companies in Ecuador and Vietnam registered with the Ministry of Food and Drug Safety, and the accuracy was improved by 28.1% and 13%, respectively, compared to the existing classification model.

Development on an Automatic Calibration Module of the SWMM for Watershed Runoff Simulation and Water Quality Simulation (유역유출 및 수질모의에 관한 SWMM의 자동 보정 모듈 개발)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.343-356
    • /
    • 2014
  • The SWMM (storm water management model) has been widely used in the world and is a watershed runoff simulation model used for a single event or a continuous simulation of runoff quantity and quality. However, there are many uncertain parameters in the watershed runoff continuous simulation module and the water quality module, which make it difficult to use the SWMM. The purpose of the study is to develop an automatic calibration module of the SWMM not only for watershed runoff continuous simulation, but also water quality simulation. The automatic calibration module was developed by linking the SWMM with the SCE-UA (shuffled complex evolution-University of Arizona) that is a global optimization algorithm. Estimation parameters of the SWMM were selected and search ranges of them were reasonably configured. The module was validated by calibration and verification of the watershed runoff continuous simulation model and the water quality model for the Donghyang Stage Station Basin. The calibration results for watershed runoff continuous simulation model were excellent and those for water quality simulation model were generally satisfactory. The module could be used in various studies and designs for watershed runoff and water quality analyses.

High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea (셀룰러 오토마타 기반 WCA2D 모형을 이용한 부산 온천천 유역 고해상도 도시 침수 해석)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • As climate change increasesthe frequency and risk of flooding in major cities around theworld, the importance ofsimulation technology that can quickly and accurately analyze high-resolution 2D flooding information in large-scale areasis emerging. The physically-based approaches based on the Shallow Water Equations (SWE) often requires huge computer resources hindering high-resolution flood prediction. This study investigated the theoretical background of Weighted Cellular Automata 2D (WCA2D), which simulates spatio-temporal changes offlooding using transition rules and weight-based system, and assessed feasibility to simulate pluvial flooding in the urbancatchment, theOncheon-cheon catchmentinBusan, SouthKorea.Inaddition,the computation performancewas compared by applying versions using OpenComputing Language (OpenCL) andOpenMulti-Processing (OpenMP) parallel computing techniques. Simulationresultsshowed that the maximuminundation depthmap by theWCA2Dmodel cansimilarly reproduce historical inundation maps. Also, it can precisely simulate spatio-temporal changes of flooding extent in the urban catchment with complex topographic characteristics. For computation efficiency, parallel computing schemes, theOpenCLandOpenMP, improved the computation by about 8~14 and 5~6 folds respectively, compared to the sequential computation.

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Runoff Analysis for Weak Rainfall Event in Urban Area Using High-ResolutionSatellite Imagery (고해상도 위성영상을 이용한 도시유역의 소강우 유출해석)

  • Kim, Jin-Young;An, Kyoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2011
  • In this research, enhanced land-cover classification methods using high-resolution satellite image (HRSI) and GIS in terms of practicality and accuracy was proposed. It aims for understanding non-point pollutant origin/loading, assessment the efficiency of rainfall storage/infiltration facilities and sounds water-environment management. The result of applying enhanced land-cover classification methods to the urban region verifies that roof and road area are including various vegetations such as roof garden, flower bed in the median strip and street tree. This accounts for 3% of total study area, and more importantly it was counted as impervious area by GIS alone or conventional indoor work. The feasibility of the method was assessed by applying to rainfall-runoff analysis for three weak rainfall in the range of 7.1-10.5 mm events in 2000, Chiba, Japan. A good agreement between simulated and observed runoff hydrograph was obtained. In comparison, the hydrograph simulated with land-use parameters by the detailed land-use information of 10m grid had an error between 31%~71%, while enhanced method showed 4% to 29%, and showed the improvement particularly for reproducing observed peak and recession flow rate of hydrograph in weak rainfall condition.

Feature Extraction and Classification of Multi-temporal SAR Data Using 3D Wavelet Transform (3차원 웨이블렛 변환을 이용한 다중시기 SAR 영상의 특징 추출 및 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yihyun
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.569-579
    • /
    • 2013
  • In this study, land-cover classification was implemented using features extracted from multi-temporal SAR data through 3D wavelet transform and the applicability of the 3D wavelet transform as a feature extraction approach was evaluated. The feature extraction stage based on 3D wavelet transform was first carried out before the classification and the extracted features were used as input for land-cover classification. For a comparison purpose, original image data without the feature extraction stage and Principal Component Analysis (PCA) based features were also classified. Multi-temporal Radarsat-1 data acquired at Dangjin, Korea was used for this experiment and five land-cover classes including paddy fields, dry fields, forest, water, and built up areas were considered for classification. According to the discrimination capability analysis, the characteristics of dry field and forest were similar, so it was very difficult to distinguish these two classes. When using wavelet-based features, classification accuracy was generally improved except built-up class. Especially the improvement of accuracy for dry field and forest classes was achieved. This improvement may be attributed to the wavelet transform procedure decomposing multi-temporal data not only temporally but also spatially. This experiment result shows that 3D wavelet transform would be an effective tool for feature extraction from multi-temporal data although this procedure should be tested to other sensors or other areas through extensive experiments.

Comparative assessment of sequential data assimilation-based streamflow predictions using semi-distributed and lumped GR4J hydrologic models: a case study of Namgang Dam basin (준분포형 및 집중형 GR4J 수문모형을 활용한 순차자료동화 기반 유량 예측 특성 비교: 남강댐 유역 사례)

  • Lee, Garim;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.585-598
    • /
    • 2024
  • To mitigate natural disasters and efficiently manage water resources, it is essential to enhance hydrologic prediction while reducing model structural uncertainties. This study analyzed the impact of lumped and semi-distributed GR4J model structures on simulation performance and evaluated uncertainties with and without data assimilation techniques. The Ensemble Kalman Filter (EnKF) and Particle Filter (PF) methods were applied to the Namgang Dam basin. Simulation results showed that the Kling-Gupta efficiency (KGE) index was 0.749 for the lumped model and 0.831 for the semi-distributed model, indicating improved performance in semi-distributed modeling by 11.0%. Additionally, the impact of uncertainties in meteorological forcings (precipitation and potential evapotranspiration) on data assimilation performance was analyzed. Optimal uncertainty conditions varied by data assimilation method for the lumped model and by sub-basin for the semi-distributed model. Moreover, reducing the calibration period length during data assimilation led to decreased simulation performance. Overall, the semi-distributed model showed improved flood simulation performance when combined with data assimilation compared to the lumped model. Selecting appropriate hyper-parameters and calibration periods according to the model structure was crucial for achieving optimal performance.