• Title/Summary/Keyword: 모양 기반 이미지 분류

Search Result 13, Processing Time 0.023 seconds

Extraction of Optimal Interest Points for Shape-based Image Classification (모양 기반 이미지 분류를 위한 최적의 우세점 추출)

  • 조성택;엄기현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.362-371
    • /
    • 2003
  • In this paper, we propose an optimal interest point extraction method to support shape-base image classification and indexing for image database by applying a dynamic threshold that reflects the characteristics of the shape contour. The threshold is determined dynamically by comparing the contour length ratio of the original shape and the approximated polygon while the algorithm is running. Because our algorithm considers the characteristics of the shape contour, it can minimize the number of interest points. For n points of the contour, the proposed algorithm has O(nlogn) computational cost on an average to extract the number of m optimal interest points. Experiments were performed on the 70 synthetic shapes of 7 different contour types and 1100 fish shapes. It shows the average optimization ratio up to 0.92 and has 14% improvement, compared to the fixed threshold method. The shape features extracted from our proposed method can be used for shape-based image classification, indexing, and similarity search via normalization.

Using Image Augmentation on Face Shape Classification (얼굴 모양 분류에 대한 Image Augmentation 적용)

  • Park, Jung-Won;Mo, Hyun-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.29-30
    • /
    • 2021
  • 본 논문에서는 이미지 분류에 쓰이는 최신 모델로 CNN과 ImageNet을 기반으로 한 EfficientNet을 활용해서 Square, Oval, Oblong, Round, Heart 총 다섯 가지의 얼굴 모양으로 분류하는 task에 두 가지 데이터로 실험해보고 추가적으로 Image Augmentation 기법을 활용해 성능향상을 보였다.

  • PDF

Markov Models based Classification of Fingerprint Structural Features (마코프 모텔 기반 지문의 구조적 특징 분류)

  • Jung Hye-Wuk;Won Jong-Jin;Kim Moon-Hyun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

Design of Content-based Image Retrival System using Multilevel Metadata (다계층 메타데이타 기반 이미지 내용검색 시스템 설계)

  • 신용수;홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.142-144
    • /
    • 2002
  • 대부분의 내용기반 이미지 검색 시스템은 이미지의 특징 벡터인 색상, 모양, 그리고 질감에 의해서 유사한 이미지를 검색하는 기법을 제공하고 있다. 최근 이러한 내용기반 이미지 검색 기술은 의료 영상 이미지와 같은 다양한 분야에 적용되고 있으며, 이에 따라서 의료 이미지를 분석하여 저장, 검색하기 위한 데이터베이스 시스템이 증가하고 있다. 그러나, 대량의 이미지로부터 원하는 이미지를 검색하기 위해서는 이미지의 메타데이타를 효율적으로 표현해야 하며, 의미성과 이미지의 특징 데이터를 통합적으로 저장 관리 할 수 있는 이미지 데이터베이스를 설계하고 구축해야만 한다. 본 논문에서는 기존의 내용기반 이미지 검색 기법을 살펴보고. 이미지를 내용기반으로 분류하고 저장할 수 있는 데이터베이스 시스템을 설계하여 효율적인 의미기반 검색을 지원말 수 있는 모델을 제시한다. 다계층 메타데이타 레이어 구조로 이미지에 대한 개념 지식 모델을 표현하고, 이미지내의 객체를 메타데이타로 표현하여 분류할 수 있는 모델을 제안한다. 또한, 이미지 내용검색을 지원하기 위한 시스템 구조를 설계하고, 메타데이타가 저장되기 위한 관계형 모델을 스타 스키마의 형태로 제시한다. 제안된 방법은 의미적인 이미지 내용 검색 방법의 지원에 활용될 수 있다.

  • PDF

Clipart Image Retrieval System using Shape Information (모양 정보를 이용한 클립아트 이미지 검색 시스템)

  • Cheong, Seong-Il;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.116-125
    • /
    • 2002
  • This paper presented a method of extracting shape information from a clipart image and then measured the similarity between clipart images using the extracted shape information. The results indicated that the outlines of the extracted clipart images were clearer that those of the original images. Previous methods of extracting shape information could be classified into outline-based methods and region-based methods. Included in the former category, the proposed method expressed the convex and concave aspects of an outline using the ratio of a rectangle. Accordingly, the proposed method was superior in expressing shape information than previous outline-based feature methods.

Sketch query method for medical image retrieval based on disease icon (의료 영상 검색을 위한 아이콘 기반의 스케치 질의 작성 방안)

  • 이낙훈;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.122-124
    • /
    • 2000
  • 본 논문은 질병이 있는 뇌종양 MRI 이미지 검색을 위해 아이콘 기반의 스케치 질의 방안을 제시한다. 기존의 이미지 검색 시스템은 이미지가 갖는 속성 중 일부의 속성 값만을 가지고 사용자가 직접 질의 이미지를 작성한다. 그러나 이런 방법으로는 여러 복잡한 속성값을 갖는 뇌종양 MRI 이미지의 내용을 표현하기는 어렵다. 그래서 본 논문에서는 질병이 있는 뇌 MRI 이미지 검색을 위해 아이콘을 사용한 템플릿 형식의 메디컬 스케치 질의 방법을 제시한다. 뇌에서 발생하는 뇌질환을 질병별로 분류하였고, 분류된 질병들이 가지고 있는 색상이나 질감, 모양과 같은 속성 값들을 아이콘화하여 템플릿 이미지로 제공되는 정상인의 이미지에 정의된 질병 아이콘의 크기와 위치를 설정함으로써 사용자가 검색하고자 하는 질의 이미지를 쉽게 작성할 수 있는 스케치 형식의 질의방법을 제안한다.

  • PDF

Seasonal Images Classification with Convolutional Neural Networks (컨볼루션 신경망을 사용한 계절 이미지 분류)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.444-447
    • /
    • 2022
  • In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

  • PDF

Interpretable Deep Learning Based On Prototype Generation (프로토타입 생성 기반 딥 러닝 모델 설명 방법)

  • Park, Jae-hun;Kim, Kwang-su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.23-26
    • /
    • 2022
  • 딥 러닝 모델은 블랙 박스 (Black Box) 모델로 예측에 대한 근거를 제시하지 못해 신뢰성이 떨어지는 단점이 존재한다. 이를 해결하기 위해 딥 러닝 모델에 설명력을 부여하는 설명 가능한 인공지능 (XAI) 분야 연구가 활발하게 이루어지고 있다. 본 논문에서는 모델 예측을 프로토타입을 통해 설명하는 딥 러닝 모델을 제시한다. 즉, "주어진 이미지는 티셔츠인데, 그 이유는 티셔츠를 대표하는 모양의 프로토타입과 닮았기 때문이다."의 형태로 딥 러닝 모델을 설명한다. 해당 모델은 Encoder, Prototype Layer, Classifier로 구성되어 있다. Encoder는 Feature를 추출하는 데 활용하고 Classifier를 통해 분류 작업을 수행한다. 모델이 제시하는 분류 결과를 설명하기 위해 Prototype Layer에서 가장 유사한 프로토타입을 찾아 설명을 제시한다. 실험 결과 프로토타입 생성 기반 설명 모델은 기존 이미지 분류 모델과 유사한 예측 정확도를 보였고, 예측에 대한 설명력까지 확보하였다.

  • PDF

A Feature-Extraction Method based on shapes of 3D Object (3차원 객체의 모양에 기반한 특징추출 기법)

  • 신준섭;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.70-72
    • /
    • 2001
  • 최근 멀티미디어 응용의 증가에 따라 그래픽 데이터를 위한 내용 기반 검색 기술에 대한 연구가 활발히 진행되고 있다. 또한 인터넷 응용분야에서 3차원 그래픽 데이터베이스 사용의 필요성이 대두되고 활용되고 있다. 대부분의 3차원 그래픽 시스템은 사용자에게 그래픽은 검색이 대상이 아니라 단순히 보여주는 역할로 주로 사용되고 있다. 3차원 그래픽객체는 어떤 객체들로 구성되여 있으며 그들의 크기는 어떠한지 등의 정보를 포함하고 있다. 따라서 3차원 그래픽 객체에서는 2차원 그래픽 객체에서는 2차원 이미지보다 의미객체에 대한 정확한 정보를 더 많이 얻어 낼 수 있다. 이러한 사실 때문에 2차원 이미지의 특징추출의 방법과는 다른 형식의 접근이 필요하다. 본 논문에서는 3차원 그래픽으로 모델링 된 3차원 객체들을 대상으로 객체가 이루는 X, Y, Z축상의 비율과 윤곽형태에 대한 SPBT(Space Partitioning Binary Tree)의 결과값으로 특징을 추출하고 샘플 데이터를 통해서 이들간의 클러스터링과 실제 예제 질의를 토한 비교분석을 통해 객체간의 유사검색이 가능하도록 하는 특징추출 방법을 제안하였다. 본 논문에서는 제시한 모양기반 특징추출 방법은 웹상의 다양한 3차원 객체정보의 자동분류나 3차원 그래픽 데이터베이스를 위한 인덱스 구축 등에 활용될 수 있을 것이다.

  • PDF

Adversarial Example Detection Based on Symbolic Representation of Image (이미지의 Symbolic Representation 기반 적대적 예제 탐지 방법)

  • Park, Sohee;Kim, Seungjoo;Yoon, Hayeon;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.975-986
    • /
    • 2022
  • Deep learning is attracting great attention, showing excellent performance in image processing, but is vulnerable to adversarial attacks that cause the model to misclassify through perturbation on input data. Adversarial examples generated by adversarial attacks are minimally perturbated where it is difficult to identify, so visual features of the images are not generally changed. Unlikely deep learning models, people are not fooled by adversarial examples, because they classify the images based on such visual features of images. This paper proposes adversarial attack detection method using Symbolic Representation, which is a visual and symbolic features such as color, shape of the image. We detect a adversarial examples by comparing the converted Symbolic Representation from the classification results for the input image and Symbolic Representation extracted from the input images. As a result of measuring performance on adversarial examples by various attack method, detection rates differed depending on attack targets and methods, but was up to 99.02% for specific target attack.