• Title/Summary/Keyword: 모스팻

Search Result 2, Processing Time 0.016 seconds

A Study of Dynamic Characteristics of Segmented Shape Memory Alloy Wire (구간 분할된 형상기억합금 와이어의 동특성에 관한 연구)

  • Jeong S.H.;Kim J.H.;Kim G.H.;Lee S.H.;Shin S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.329-330
    • /
    • 2006
  • The research and development of an actuator are accelerating in the robotics industry. The electricity polymer and SMA actuator are designed simply and are produced a lot of forces per unit volume. Their motions are similar to human's motion, But the repeatability of the electricity polymer actuator is lower. The reaction velocity of the SMA actuator is slow and the travel is short. In this paper, the dynamic characteristic of the segmented SMA is studied. The SMA wire is divided by using the Thermo-electric module(TEM) to control each of segments independently. The MOSFET circuit is used to supply constant currents fer the Thermo-electric module(TEM). The hysteresis and displacement of the SMA wire according to load are measured.

  • PDF

A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter (ISG 구동용 인버터의 열유동 해석에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.