• Title/Summary/Keyword: 모수

Search Result 2,142, Processing Time 0.023 seconds

Nonparametric procedures using aligned method and joint placement in randomized block design with replications (반복이 있는 랜덤화 블록 계획법에서 정렬방법과 결합위치를 이용한 비모수 검정법)

  • Lee, Eunjee;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.291-299
    • /
    • 2017
  • Mack and Skillings (1980) proposed nonparametric procedures in a randomized block design with replications as general alternatives. This method is used to find the difference in the treatment effect; however, it can cause a loss of inter block information using the ranking in each block. In this paper, we proposed new nonparametric procedures in a randomized block design with replications using an aligned method proposed by Hodges and Lehmann (1962) that used information of blocks and based on the joint placement suggest by Chung and Kim (2008). We also compared the power of the test of the proposed procedures and established a method through Monte Carlo simulation.

Assessment of New Design Wave by Spread Parameter and Expected Sliding Distance of Caisson Breakwater (확산모수와 제이슨방파제 기대활동량을 이용한 개정 설계파 분석)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • Extreme value distributions for new deep sea wave were analyzed by using spread parameter and correlations between spread parameter and sliding distance of caisson breakwater were shown in numerical example. When spread parameter is larger than as usual, there occurred extra-ordinarily large wave height among 50 annual maximum significant waves generated by extreme value distribution. Spread parameter of new design wave is identified to be comparably larger than some foreign coastal areas and may cause large sliding displacement though deterministic safety factor for sliding is satisfied with enough margin.

A study on parsimonious periodic autoregressive model (모수 절약 주기적 자기회귀 모형에 관한 연구)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.133-144
    • /
    • 2016
  • This paper proposes a parsimonious periodic autoregressive (PAR) model. The proposed model performance is evaluated through an analysis of Korean unemployment rate series that is compared with existing models. We exploit some common features among each seasonality and confirm it by LR test for the parsimonious PAR model in order to impose a parsimonious structure on the PAR model. We observe that the PAR model tends to be superior to existing seasonal time series models in mid- and long-term forecasts. The proposed parsimonious model significantly improves forecasting performance.

Bayesian analysis of insurance risk model with parameter uncertainty (베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형)

  • Cho, Jaerin;Ji, Hyesu;Lee, Hangsuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In the Heckman-Meyers model, which is frequently referred by IAA, Swiss Solvency Test, EU Solvency II, the assumption of parameter distribution is key factor. While in theory Bayesian analysis somewhat reflects parameter uncertainty using prior distribution, it is often the case where both Heckman-Meyers and Bayesian are necessary to better manage the parameter uncertainty. Therefore, this paper proposes the use of Bayesian H-M CRM, a combination of Heckman-Meyers model and Bayesian, and analyzes its efficiency.

Nonparametric procedures using aligned method and joint placement in randomized block design (랜덤화 블록 계획법에서 정렬방법과 결합 위치를 이용한 비모수 검정법)

  • Jo, Sungdong;Kim, Dongjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.95-103
    • /
    • 2013
  • Nonparametric procedure in randomized block design (RBD) was proposed by Friedman (1937) for general alternatives. Also Page (1963) suggested the test for ordered alternatives in RBD. In this paper, we proposed the new nonparametric method in randomized block design using aligned method suggested by Hodges and Lehmann (1962) and the joint placement described in Chung and Kim (2007). Also, Monte Carlo simulation study was adapted to compare the power of the proposed procedure with those of previous procedure.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method) (극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로))

  • Woo, Ji-Yong;Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.463-477
    • /
    • 2009
  • Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.

Parameter estimation for exponential distribution under progressive type I interval censoring (지수 분포를 따르는 점진 제1종 구간 중도절단표본에서 모수 추정)

  • Shin, Hye-Jung;Lee, Kwang-Ho;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.927-934
    • /
    • 2010
  • In this paper, we introduce a method of parameter estimation of progressive Type I interval censored sample and progressive type II censored sample. We propose a new parameter estimation method, that is converting the data which obtained by progressive type I interval censored, those data be used to estimate of the parameter in progressive type II censored sample. We used exponential distribution with unknown scale parameter, the maximum likelihood estimator of the parameter calculates from the two methods. A simulation is conducted to compare two kinds of methods, it is found that the proposed method obtains a better estimate than progressive Type I interval censoring method in terms of mean square error.

A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes (베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구)

  • Park, Yuha;Choi, Ilsu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2017
  • Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.

Analysis of the applicability of parameter estimation methods for a stochastic rainfall generation model (강우모의모형의 모수 추정 최적화 기법의 적합성 분석)

  • Cho, Hyungon;Lee, Kyeong Eun;Kim, Gwangseob
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1447-1456
    • /
    • 2017
  • Accurate inference of parameters of a stochastic rainfall generation model is essential to improve the applicability of the rainfall generation model which modeled the rainfall process and the structure of rainfall events. In this study, the model parameters of a stochastic rainfall generation model, NSRPM (Neyman-Scott rectangular pulse model), were estimated using DFP (Davidon-Fletcher-Powell), GA (genetic algorithm), Nelder-Mead, and DE (differential evolution) methods. Summer season hourly rainfall data of 20 rainfall observation sites within the Nakdong river basin from 1973 to 2017 were used to estimate parameters and the regional applicability of inference methods were analyzed. Overall results demonstrated that DE and Nelder-Mead methods generate better results than that of DFP and GA methods.