• Title/Summary/Keyword: 모수추정법

Search Result 213, Processing Time 0.021 seconds

Parameter Estimation in the Multiplicative Models (승법모형의 모수추정)

  • Chang, Suk-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • The parameters in the multiplicative model $Y_{1}={\alpha}_{0}{\prod}^{p}_{k=1}X_{kj}^{{\beta}_K}v_{j}$ are usually estimated by the least squares method after logarithmic transformation, and the least square Estimator of ${\alpha}_{0}$ is known to be biased, i.e., $E(e xp(\hat{\beta}_{0})){\neq}{\alpha}_{0})$. In the present study the unbaised estimators of ${\alpha}_{0}$ are examined(1) by modifying the least squares estimator and (2) by applying the Finney's results. The variances are also compared. In addition it has been observed that multiplicative model can be used to express the relationship beetween rice yield and yield components.

  • PDF

퍼지확률회귀모형(確率回歸模型)

  • Lee, Ho-Sung;O, Chang-Hyeok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 1994
  • 기존의 퍼지회귀모형은 모수의 퍼지성질에 의해 관측된 종속변수의 변동을 설명하는 방법이다. 그러나 일반적으로 종속변수에 영향을 미치는 모든 독립변수를 모형화하는 일은 불가능하므로 종속변수가 삼각퍼지숫자로 관측된 경우 모형화되지 않은 변수들의 영향을 랜덤 오차항으로 두는 퍼지확률회귀모형을 소개하고 이에 따른 모수추정법을 다룬다. 이 방법은 통계적 회귀모형의 일반화로 간주할 수 있다.

  • PDF

An Estimation of Parameters in Weibull Distribution Using Least Squares Method under Random Censoring Model (임의 중단모형에서 최소제곱법을 이용한 와이블분포의 모수 추정)

  • Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.263-272
    • /
    • 1996
  • In this parer, under random censorship model, an estimation of scale and shape parameters in Weibull lifetime model is considered. Based on nonparametric estimator of survival function, the least square method is proposed. The proposed estimation method is simple and the performance of the proposed estimator is as efficient as maximum likelihood estimators. An example is presented, using field winding data. Simulation studies are performed to compare the performaces of the proposed estimator and maximum likelihood estimator.

  • PDF

A Parameter Estimation of Software Reliability Growth Model with Change-Point (변화점을 고려한 소프트웨어 신뢰도 성장모형의 모수추정)

  • Kim, Do-Hoon;Park, Chun-Gun;Nam, Kyung-H.
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.813-823
    • /
    • 2008
  • The non-homogeneous Poisson process(NHPP) based software reliability growth models are proved quite successful in practical software reliability engineering. The fault detection rate is usually assumed to be the continuous and monotonic function. However, the fault detection rate can be affected by many factors such as the testing strategy, running environment and resource allocation. This paper describes a parameter estimation of software reliability growth model with change-point problem. We obtain the maximum likelihood estimate(MLE) and least square estimate(LSE), and compare goodness-of-fit.

A Study on Automatic Learning of Weight Decay Neural Network (가중치감소 신경망의 자동학습에 관한 연구)

  • Hwang, Chang-Ha;Na, Eun-Young;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Neural networks we increasingly being seen as an addition to the statistics toolkit which should be considered alongside both classical and modern statistical methods. Neural networks are usually useful for classification and function estimation. In this paper we concentrate on function estimation using neural networks with weight decay factor The use of weight decay seems both to help the optimization process and to avoid overfitting. In this type of neural networks, the problem to decide the number of hidden nodes, weight decay parameter and iteration number of learning is very important. It is called the optimization of weight decay neural networks. In this paper we propose a automatic optimization based on genetic algorithms. Moreover, we compare the weight decay neural network automatically learned according to automatic optimization with ordinary neural network, projection pursuit regression and support vector machines.

  • PDF

Time series analysis for Korean COVID-19 confirmed cases: HAR-TP-T model approach (한국 COVID-19 확진자 수에 대한 시계열 분석: HAR-TP-T 모형 접근법)

  • Yu, SeongMin;Hwang, Eunju
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.239-254
    • /
    • 2021
  • This paper studies time series analysis with estimation and forecasting for Korean COVID-19 confirmed cases, based on the approach of a heterogeneous autoregressive (HAR) model with two-piece t (TP-T) distributed errors. We consider HAR-TP-T time series models and suggest a step-by-step method to estimate HAR coefficients as well as TP-T distribution parameters. In our proposed step-by-step estimation, the ordinary least squares method is utilized to estimate the HAR coefficients while the maximum likelihood estimation (MLE) method is adopted to estimate the TP-T error parameters. A simulation study on the step-by-step method is conducted and it shows a good performance. For the empirical analysis on the Korean COVID-19 confirmed cases, estimates in the HAR-TP-T models of order p = 2, 3, 4 are computed along with a couple of selected lags, which include the optimal lags chosen by minimizing the mean squares errors of the models. The estimation results by our proposed method and the solely MLE are compared with some criteria rules. Our proposed step-by-step method outperforms the MLE in two aspects: mean squares error of the HAR model and mean squares difference between the TP-T residuals and their densities. Moreover, forecasting for the Korean COVID-19 confirmed cases is discussed with the optimally selected HAR-TP-T model. Mean absolute percentage error of one-step ahead out-of-sample forecasts is evaluated as 0.0953% in the proposed model. We conclude that our proposed HAR-TP-T time series model with optimally selected lags and its step-by-step estimation provide an accurate forecasting performance for the Korean COVID-19 confirmed cases.

Parameter Estimation and Prediction methods for Hyper-Geometric Distribution software Reliability Growth Model (초기하분포 소프트웨어 신뢰성 성장 모델에서의 모수 추정과 예측 방법)

  • Park, Joong-Yang;Yoo, Chang-Yeul;Lee, Bu-Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2345-2352
    • /
    • 1998
  • The hyper-geometric distribution software reliability growth model was recently developed and successfully applied Due to mathematical difficultv of the maximum likclihmd method, the least squares method has hem suggested for parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by the previous studies. It is theo shown that the weighted least squares method is more appropriate hecause of the nonhomogeneous variability of the number of newly detected faults. The adequacy of the weighted least squares method is illustrated by two numerical examples. Finally, we propose a new method fur predicting the number of faults newly discovered by next test instances. The new prediction method can be used for determining the time to stop testing.

  • PDF

Modification of boundary bias in nonparametric regression (비모수적 회귀선추정의 바운더리 편의 수정)

  • 차경준
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.329-339
    • /
    • 1993
  • Kernel regression is a nonparametric regression technique which requires only differentiability of the true function. If one wants to use the kernel regression technique to produce smooth estimates of a curve over a finite interval, one can realize that there exist distinct boundary problems that detract from the global performance of the estimator. This paper develops a kernel to handle boundary problem. In order to develop the boundary kernel, a generalized jacknife method by Gray and Schucany (1972) is adapted. Also, it will be shown that the boundary kernel has the same order of convergence rate as non-boundary.

  • PDF

모의실험을 통한 가산위험모형에 대한 적합도검정법들의 비교

  • 김진흠
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • Kim and Song(1995)과 Kim and Lee(1996)는 하나의 이지공변량(binary covariate)을 갖는 가산위험모형(additive risk model)의 적합도검정법(goodness-of-fit test)을 제안했다. 전자는 모수의 가중추정량들의 차에 기초한 검정법이며 후자는 마팅게일잔차(martingale residual)에 기초한 검정법이다. 본 논문에서는 모의실험을 통하여 두 검정법을 비교하였다.

  • PDF

Development of Urban Freeway Traffic Simulation Model (URFSIM-1 : 도시고속도로 교통류 시뮬레이션 모형 개발)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.1
    • /
    • pp.85-103
    • /
    • 1997
  • 국내 도시교통에서 도시고속도로가 차지하는 비중은 급증하고 있으나 이의 효율적 인 운영은 아직 초보수준인 실정이다. 도시고속도로의 운영전략이나 기하구조 설계대안을 개발·분석·평가하는데 시뮬레이션 모형을 활용하는 것은 필수적이나 외국에서 개발된 모형 을 국내에 적용하는 데에는 많은 제약이 따르고 있다. 따라서 본 연구는 국내 현실에 적합 한 도시고속도로 교통류 시뮬레이션 모형을 개발하려는데 그 목적이 있으며 연속 교통류 모 형의 개발, 모수추정 방법의 제시, 컴퓨터 코딩, 모형평가의 세부작업이 수행되었다. URFSIM-1은 각 구간에서 통행목적지별 차량 수를 추적할 수 있는 통행수요모형 기능에 구 간내 이동을 동적으로 기술할 수 있는 거시적 교통류 모형을 결합한 것을 기본 교통류 모형 으로 채택하고 있다. 비선형 최소 자승법에 의해 교통류 모형 모수와 O-D 모수를 추정하는 방법이 제시되었다. 마지막으로 유고상황을 가상한 정성분석과 미국 도시고속도로에서 수집 한 현장자료를 이용한 모형의 평가를 시행하였다.

  • PDF