• Title/Summary/Keyword: 모수적 추정

Search Result 734, Processing Time 0.028 seconds

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Bias corrected non-response estimation using nonparametric function estimation of super population model (선형 응답률 모형에서 초모집단 모형의 비모수적 함수 추정을 이용한 무응답 편향 보정 추정)

  • Sim, Joo-Yong;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.923-936
    • /
    • 2021
  • A large number of non-responses are occurring in the sample survey, and various methods have been developed to deal with them appropriately. In particular, the bias caused by non-ignorable non-response greatly reduces the accuracy of estimation and makes non-response processing difficult. Recently, Chung and Shin (2017, 2020) proposed an estimator that improves the accuracy of estimation using parametric super-population model and response rate model. In this study, we suggested a bias corrected non-response mean estimator using a nonparametric function generalizing the form of a parametric super-population model. We confirmed the superiority of the proposed estimator through simulation studies.

Nonparametric Bayesian Statistical Models in Biomedical Research (생물/보건/의학 연구를 위한 비모수 베이지안 통계모형)

  • Noh, Heesang;Park, Jinsu;Sim, Gyuseok;Yu, Jae-Eun;Chung, Yeonseung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.867-889
    • /
    • 2014
  • Nonparametric Bayesian (np Bayes) statistical models are popularly used in a variety of research areas because of their flexibility and computational convenience. This paper reviews the np Bayes models focusing on biomedical research applications. We review key probability models for np Bayes inference while illustrating how each of the models is used to answer different types of research questions using biomedical examples. The examples are chosen to highlight the problems that are challenging for standard parametric inference but can be solved using nonparametric inference. We discuss np Bayes inference in four topics: (1) density estimation, (2) clustering, (3) random effects distribution, and (4) regression.

A Parameter Estimation Method using Nonlinear Least Squares (비선형 최소제곱법을 이용한 모수추정 방법론)

  • Oh, Suna;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.431-440
    • /
    • 2013
  • We consider the problem of estimating the parameters of heavy tailed distributions. In general, maximum likelihood estimation(MLE) is the most preferred method of parameter estimation because it has good properties such as asymptotic consistency, normality and efficiency. However, MLE is not always the best solution because MLE is unstable or does not exist in some cases. This paper proposes another parameter estimation method, non-linear least squares(NLS) and compares its performance to MLE. The NLS estimator is achieved by minimizing sum of squared difference between empirical cumulative distribution function(CDF) and a theoretical distribution function. In this article, we compare the NLS method to MLE using simulated data from heavy tailed distributions. The NLS method is shown to perform better than MLE in Burr distribution when the sample size is small; in addition, it performs well in a Frechet distribution.

VAR를 이용한 금융위험 측정

  • Yu, Il-Seong;Lee, Yu-Tae
    • The Korean Journal of Financial Studies
    • /
    • v.10 no.1
    • /
    • pp.191-214
    • /
    • 2004
  • VaR에 의한 금융위험의 측정은 국제결제은행 바젤위원회의 내부모델 허용에 힘입어 금융산업에서 표준방식으로 확고한 입지를 차지하고 있다. 본 연구에서는 한국주식시장포트폴리오를 거래투자자산으로 보유한 경우의 VaR를 극단치이론에 입각하여 측정하고 이의 성과를 RiskMetrics의 성과와 비교하여 검토하였다. GPD의 모수적 추정에 의한 VaR의 사후검정결과는 표본내 사후검정이나 표본외 사후검정에서 어떤 신뢰수준에서도 기대되는 범위와 크게 벗어나지 않은 안정된 결과를 보였다. RiskMetrics의 EWMA방식도 역시 표본내와 표본외 사후검정 어느 경우에나 기대되는 범위에서 크게 벗어나지 않았지만 높은 신뢰수준에서는 그 성과가 GPD VaR에 비하여 상대적으로 불안정하였으며 위험의 과소평가 성향을 확인할 수 있었다. 비모수적 GEV추정에 입각한 VaR의 경우에는 위험을 과대평가하고 지나치게 보수적인 성향을 나타내었다. GPD의 모수적 접근에 의한 VaR 측정은 다양한 신뢰수준에서 정확한 검정결과를 보여주고 있으며, 시간적 흐름에 따르는 VaR의 행태도 지나친 변동성을 보이지 않아 외부규제 및 내부통제를 위한 금융위험의 측정지표로서 실용적인 가치가 있음을 확인할 수 있다.

  • PDF

Reliability Analysis Using Parametric and Nonparametric Input Modeling Methods (모수적·비모수적 입력모델링 기법을 이용한 신뢰성 해석)

  • Kang, Young-Jin;Hong, Jimin;Lim, O-Kaung;Noh, Yoojeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Reliability analysis(RA) and Reliability-based design optimization(RBDO) require statistical modeling of input random variables, which is parametrically or nonparametrically determined based on experimental data. For the parametric method, goodness-of-fit (GOF) test and model selection method are widely used, and a sequential statistical modeling method combining the merits of the two methods has been recently proposed. Kernel density estimation(KDE) is often used as a nonparametric method, and it well describes a distribution function when the number of data is small or a density function has multimodal distribution. Although accurate statistical models are needed to obtain accurate RA and RBDO results, accurate statistical modeling is difficult when the number of data is small. In this study, the accuracy of two statistical modeling methods, SSM and KDE, were compared according to the number of data. Through numerical examples, the RA results using the input models modeled by two methods were compared, and appropriate modeling method was proposed according to the number of data.

Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method) (극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로))

  • Woo, Ji-Yong;Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.463-477
    • /
    • 2009
  • Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.

A Semiparametric Estimation of the Contingent Valuation Model (조건부가치평가모형의 준모수 추정)

  • Park, Joo Heon
    • Environmental and Resource Economics Review
    • /
    • v.12 no.4
    • /
    • pp.545-557
    • /
    • 2003
  • A new semiparametric estimator of a dichotomous choice contingent valuation model is proposed by adapting the well-known density weighted average derivative of the regression function. A small sample behavior of the estimator is demonstrated very briefly by a simulation and the estimator is applied to estimate the WTP for preserving the Dong River area in Korea.

  • PDF