• Title/Summary/Keyword: 모수적 추정방법

Search Result 414, Processing Time 0.027 seconds

붓스트랩 표준편차 추정량으로 표준화한 U-통계량을 이용한 비모수적 검정법

  • 이기훈
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.221-226
    • /
    • 1995
  • 본 연구는 붓스트랩에 의한 U-통계량의 분산추정방법을 제안하고, 추정량의 일치성을 증명하였다. 결과적으로 붓스트랩 추정량으로 표준화한 U-통계량의 값이 표준정규분포에 근사함을 보였다. 또한 실제적인 비모수검정에서 이를 응용하여 검정력과 특성을 연구하였다.

  • PDF

Comparison of the Weather Station Networks Used for the Estimation of the Cultivar Parameters of the CERES-Rice Model in Korea (CERES-Rice 모형의 품종 모수 추정을 위한 국내 기상관측망 비교)

  • Hyun, Shinwoo;Kim, Tae Kyung;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.122-133
    • /
    • 2021
  • Cultivar parameter calibration can be affected by the reliability of the input data to a crop growth model. In South Korea, two sets of weather stations, which are included in the automated synoptic observing system (ASOS) or the automatic weather system (AWS), are available for preparation of the weather input data. The objectives of this study were to estimate the cultivar parameter using those sets of weather data and to compare the uncertainty of these parameters. The cultivar parameters of CERES-Rice model for Shindongjin cultivar was calibrated using the weather data measured at the weather stations included in either ASO S or AWS. The observation data of crop growth and management at the experiment farms were retrieved from the report of new cultivar development and research published by Rural Development Administration. The weather stations were chosen to be the nearest neighbor to the experiment farms where crop data were collected. The Generalized Likelihood Uncertainty Estimation (GLUE) method was used to calibrate the cultivar parameters for 100 times, which resulted in the distribution of parameter values. O n average, the errors of the heading date decreased by one day when the weather input data were obtained from the weather stations included in AWS compared with ASO S. In particular, reduction of the estimation error was observed even when the distance between the experiment farm and the ASOS stations was about 15 km. These results suggest that the use of the AWS stations would improve the reliability and applicability of the crop growth models for decision support as well as parameter calibration.

Parameter estimation of linear function using VUS and HUM maximization (VUS와 HUM 최적화를 이용한 선형함수의 모수추정)

  • Hong, Chong Sun;Won, Chi Hwan;Jeong, Dong Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1305-1315
    • /
    • 2015
  • Consider the risk score which is a function of a linear score for the classification models. The AUC optimization method can be applied to estimate the coefficients of linear score. These estimates obtained by this AUC approach method are shown to be better than the maximum likelihood estimators using logistic models under the general situation which does not fit the logistic assumptions. In this work, the VUS and HUM approach methods are suggested by extending AUC approach method for more realistic discrimination and prediction worlds. Some simulation results are obtained with both various distributions of thresholds and three kinds of link functions such as logit, complementary log-log and modified logit functions. It is found that coefficient prediction results by using the VUS and HUM approach methods for multiple categorical classification are equivalent to or better than those by using logistic models with some link functions.

A Trimmed Spatial Median Estimator Using Bootstrap Method (붓스트랩을 활용한 최적 절사공간중위수 추정량)

  • Lee, Dong-Hee;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.375-382
    • /
    • 2010
  • In this study, we propose a robust estimator of the multivariate location parameter by means of the spatial median based on data trimming which extending trimmed mean in the univariate setup. The trimming quantity of this estimator is determined by the bootstrap method, and its covariance matrix is estimated by using the double bootstrap method. This extends the work of Jhun et al. (1993) to the multivariate case. Monte Carlo study shows that the proposed trimmed spatial median estimator yields better efficiency than a spatial median, while its covariance matrix based on double bootstrap overcomes the under-estimating problem occurred on single bootstrap method.

Development of Urban Freeway Traffic Simulation Model (URFSIM-1 : 도시고속도로 교통류 시뮬레이션 모형 개발)

  • 강정규
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.1
    • /
    • pp.85-103
    • /
    • 1997
  • 국내 도시교통에서 도시고속도로가 차지하는 비중은 급증하고 있으나 이의 효율적 인 운영은 아직 초보수준인 실정이다. 도시고속도로의 운영전략이나 기하구조 설계대안을 개발·분석·평가하는데 시뮬레이션 모형을 활용하는 것은 필수적이나 외국에서 개발된 모형 을 국내에 적용하는 데에는 많은 제약이 따르고 있다. 따라서 본 연구는 국내 현실에 적합 한 도시고속도로 교통류 시뮬레이션 모형을 개발하려는데 그 목적이 있으며 연속 교통류 모 형의 개발, 모수추정 방법의 제시, 컴퓨터 코딩, 모형평가의 세부작업이 수행되었다. URFSIM-1은 각 구간에서 통행목적지별 차량 수를 추적할 수 있는 통행수요모형 기능에 구 간내 이동을 동적으로 기술할 수 있는 거시적 교통류 모형을 결합한 것을 기본 교통류 모형 으로 채택하고 있다. 비선형 최소 자승법에 의해 교통류 모형 모수와 O-D 모수를 추정하는 방법이 제시되었다. 마지막으로 유고상황을 가상한 정성분석과 미국 도시고속도로에서 수집 한 현장자료를 이용한 모형의 평가를 시행하였다.

  • PDF

A Study on Automatic Learning of Weight Decay Neural Network (가중치감소 신경망의 자동학습에 관한 연구)

  • Hwang, Chang-Ha;Na, Eun-Young;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • Neural networks we increasingly being seen as an addition to the statistics toolkit which should be considered alongside both classical and modern statistical methods. Neural networks are usually useful for classification and function estimation. In this paper we concentrate on function estimation using neural networks with weight decay factor The use of weight decay seems both to help the optimization process and to avoid overfitting. In this type of neural networks, the problem to decide the number of hidden nodes, weight decay parameter and iteration number of learning is very important. It is called the optimization of weight decay neural networks. In this paper we propose a automatic optimization based on genetic algorithms. Moreover, we compare the weight decay neural network automatically learned according to automatic optimization with ordinary neural network, projection pursuit regression and support vector machines.

  • PDF

Nonparametric estimation of hazard rates change-point (위험률의 변화점에 대한 비모수적 추정)

  • 정광모
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.163-175
    • /
    • 1998
  • The change of hazard rates at some unknown time point has been the interest of many statisticians. But it was restricted to the constant hazard rates which correspond to the exponential distribution. In this paper we generalize the change-point model in which any specific functional forms of hazard rates are net assumed. The assumed model includes various types of changes before and after the unknown time point. The Nelson estimator of cumulative hazard function is introduced. We estimate the change-point maximizing slope changes of Nelson estimator. Consistency and asymptotic distribution of bootstrap estimator are obtained using the martingale theory. Through a Monte Carlo study we check the performance of the proposed method. We also explain the proposed method using the Stanford Heart Transplant Data set.

  • PDF

Modeling Clustered Interval-Censored Failure Time Data with Informative Cluster Size (군집의 크기가 생존시간에 영향을 미치는 군집 구간중도절단된 자료에 대한 준모수적 모형)

  • Kim, Jinheum;Kim, Youn Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.331-343
    • /
    • 2014
  • We propose two estimating procedures to analyze clustered interval-censored data with an informative cluster size based on a marginal model and investigate their asymptotic properties. One is an extension of Cong et al. (2007) to interval-censored data and the other uses the within-cluster resampling method proposed by Hoffman et al. (2001). Simulation results imply that the proposed estimators have a better performance in terms of bias and coverage rate of true value than an estimator with no adjustment of informative cluster size when the cluster size is related with survival time. Finally, they are applied to lymphatic filariasis data adopted from Williamson et al. (2008).

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

Modification of boundary bias in nonparametric regression (비모수적 회귀선추정의 바운더리 편의 수정)

  • 차경준
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.329-339
    • /
    • 1993
  • Kernel regression is a nonparametric regression technique which requires only differentiability of the true function. If one wants to use the kernel regression technique to produce smooth estimates of a curve over a finite interval, one can realize that there exist distinct boundary problems that detract from the global performance of the estimator. This paper develops a kernel to handle boundary problem. In order to develop the boundary kernel, a generalized jacknife method by Gray and Schucany (1972) is adapted. Also, it will be shown that the boundary kernel has the same order of convergence rate as non-boundary.

  • PDF