• 제목/요약/키워드: 모션 히스토리 이미지

검색결과 6건 처리시간 0.019초

시점에 독립적인 제스처 인식을 위한 볼륨 모션 템플릿 (Volume Motion Template For View Independent Gesture Recognition)

  • 신호근;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.844-846
    • /
    • 2005
  • 본 논문은 시점에 독립적인 제스처 인식을 위하여 볼륨 모션 템플릿을 제안한다. 기존 제스처 연구에서 시점 문제와 행동 속도의 편차는 중요하면서도 어려운 문제이다. 첫째, 시점 문제는 하나의 단안 카메라나 스테레오 카메라를 이용하는 단방향 카메라 환경에서 발생하며 해결하기 어려운 문제이다. 모든 시점에서 학습시켜야 하는 기존 연구의 단점을 해결하기 위해, 다양한 시점입력에 독립적으로 인식을 할 수 있는 볼륨 모션 템플릿을 제안한다. 볼륨 모션 템플릿은 깊이 정보와 모션의 방향성 통해 최적의 가상 시점을 제공한다. 또한 볼륨 모션 템플릿을 이용하여 시스템의 신뢰성과 확장성 또한 개선하였다. 두 번째, 제스처가 발생 시마다 생기는 속도의 편차 문제이다. 입력 제스처의 시간-정규화를 통해 해결할 수 있는데, 시간 정보 대신 모션 량을 사용하여 이를 해결하였다. 볼륨 모션 템플릿을 이용하여 다양한 시점 입력에 대해 실험하였고, 기존 모션 히스토리 이미지와 비교하여 시점에 독립적인 결과를 얻었다.

  • PDF

무대 공연을 위한 제스처 인식 기반 동적 프로젝션 맵핑 프레임워크 구현 (Implementation of Dynamic Projection Mapping Framework based on Gesture Recognition for Stage Performance)

  • 고유진;김태원;최유주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.633-634
    • /
    • 2020
  • 본 논문에서는 미디어영상을 기반한 무대 공연의 다양한 미디어 효과를 분석하고, 무대 공연을 위한 제스처 기반 동적 프로젝션 맵핑 프레임워크를 설계 구현한다. 이를 위하여, 동적 프로젝션 맵핑 기반 기존 공연에서 공연자의 제스처와 이에 따른 미디어 효과를 분석하고, 동적 프로젝션 맵핑기술을 효율적으로 구현하기 위하여 모션 히스토리 이미지를 이용한 CNN(Convolutional Neural Network) 기반의 제스처 인식 기술을 구현한다. 또한, 구현된 제스처인식 기술을 기반으로 공연자의 서로 다른 제스처와 미디어 효과를 매칭시킬 수 있는 프레임 워크 구현 내용을 소개한다.

MHI의 형태 정보를 이용한 동작 인식 (Gesture Recognition using MHI Shape Information)

  • 김상균
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.1-13
    • /
    • 2011
  • 본 논문에서는 MHI(Motion History Image)의 형태학적 정보를 이용하여 동작을 인식하는 제스처 인식(Gesture Recognition) 시스템을 제안한다. 입력되는 영상으로부터 동작에 관한 정보를 제공하는 MHI를 획득하고, 이 MHI로부터 x, y 각각의 좌표에 대한 기울기(gradient) 영상을 추출한다. 각각의 기울기 영상에 형태 문맥기법(shape context method)을 적용하여 형태 정보를 추출하고, 추출된 형태 정보 값들을 특징 값으로 사용한다. 이렇게 획득한 특징값들을 최종적으로 SVM(Support Vector Machine) 분류기로 학습 및 분류하여 동작을 인식한다. 제안하는 시스템은 MHI의 형태학적인 정보들을 사용함으로써 동작의 방향성을 인식할수 있고 다수 사람의 동작 인식이 가능하다. 뿐만 아니라 간단한 특징 추출 방법으로 높은 인식률의 시스템을 구현하였다.

이종 알고리즘을 융합한 다중 이동객체 검출 (Multiple Moving Object Detection Using Different Algorithms)

  • 허성남;손현식;문병인
    • 한국통신학회논문지
    • /
    • 제40권9호
    • /
    • pp.1828-1836
    • /
    • 2015
  • 객체 추적 알고리즘들은 객체 인식 결과를 이용한 관심영역 설정을 통해 영상 전체에 대한 연산이 수행되는 것을 방지하여 연산량을 줄일 수 있다. 따라서 객체 인식 알고리즘의 정확한 객체 검출은 객체 추적에서 매우 중요한 과정이다. 고정된 카메라를 기반으로 하여 이동하는 객체를 검출 하는 방법으로 배경 차 알고리즘이 널리 사용되어왔고 많은 연구에 의해 배경 모델링 방법이 개선되면서 배경 차 알고리즘의 성능이 개선되었으나 여전히 정확하지 못한 배경 모델링에 의한 객체 오검출의 문제를 가진다. 이에 본 논문에서는 제스쳐 인식에 주로 사용되는 모션 히스토리 이미지 알고리즘을 배경 차 알고리즘과 융합하여 기존의 배경 차 알고리즘이 가지는 문제점을 극복할 수 있는 다중 이동객체 검출 알고리즘을 제안한다. 제안하는 알고리즘은 융합 과정 추가로 수행시간이 다소 길어지나 실시간성을 만족하며 기존의 배경 차 알고리즘에 비해 높은 정확도를 가짐을 실험을 통해 확인하였다.

차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축 (On-Road Car Detection System Using VD-GMM 2.0)

  • 이옥민;원인수;이상민;권장우
    • 한국통신학회논문지
    • /
    • 제40권11호
    • /
    • pp.2291-2297
    • /
    • 2015
  • 본 연구에서는 레이더 검지 시스템과 통합하여 적용하기 위해 도로 위를 이동하는 자동차의 영상을 입력 받아 자동차를 검출하는 방법을 제안한다. 입력 영상의 제약조건이 있다. 도로 위에서 아래 방향을 비스듬히 내려 보는 고정된 시야를 가져야한다는 점이다. 주어진 영상 중 도로 영역만을 이용하기 위해 도로 영역을 관심영역으로 검출해 적용한다. 서론에서는 도로 영역 내에서 차량 검출을 위해 사용한 모션 히스토리 이미지 추출 방법, SIFT(Scale-Invariant Feature Transform) 알고리즘, 히스토그램 분석 등을 적용한 실험결과와 이에 대한 한계점을 제시했다. 이를 해결하기 위해서 가우시안 혼합 모델(GMM, Gaussian Mixture Model)의 응용을 제안한다. 가우시안 혼합 모델 알고리즘을 응용한 차량 검출 GMM(VDGMM, Vehicle Detection GMM)과 이를 차량 검출에 더 최적화한 차량 검출 GMM 2.0을 설명하고, 차량 검출 GMM 2.0을 적용한 실험결과 및 결론을 제시한다. 도로 영역 검출 없이 GMM을 적용한 결과는 정확율, 재현율, F1이 각각 9%, 53%, 15%이었고, 도로 영역 검출 후 차량 검출 GMM 2.0을 적용한 결과는 각각 85%, 77%, 80%로 많은 차이를 보였다.

제스처 인식 기반의 인터랙티브 미디어 콘텐츠 제작 프레임워크 구현 (Implementation of Interactive Media Content Production Framework based on Gesture Recognition)

  • 고유진;김태원;김용구;최유주
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.545-559
    • /
    • 2020
  • 본 논문에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 프로그래밍 경험이 없는 사용자가 쉽게 제작할 수 있도록 하는 콘텐츠 제작 프레임워크를 제안한다. 제안 프레임워크에서 사용자는 사용하는 제스처와 이에 반응하는 미디어의 효과를 번호로 정의하고, 텍스트 기반의 구성 파일에서 이를 연결한다. 제안 프레임워크에서는 사용자의 제스처에 따라 반응하는 인터랙티브 미디어 콘텐츠를 사용자의 위치를 추적하여 프로젝션 시키기 위하여 동적 프로젝션 맵핑 모듈과 연결하였다. 또한, 제스처 인식을 위한 처리 속도와 메모리 부담을 줄이기 위하여 사용자의 움직임을 그레이 스케일(gray scale)의 모션 히스토리 이미지(Motion history image)로 표현하고, 이를 입력 데이터로 사용하는 제스처 인식을 위한 합성곱 신경망(Convolutional Neural Network) 모델을 설계하였다. 5가지 제스처를 인식하는 실험을 통하여 합성곱 신경망 모델의 계층수와 하이퍼파라미터를 결정하고 이를 제안 프레임워크에 적용하였다. 제스처 인식 실험에서 97.96%의 인식률과 12.04 FPS의 처리속도를 획득하였고, 3가지 파티클 효과와 연결한 실험에서 사용자의 움직임에 따라 의도하는 적절한 미디어 효과가 실시간으로 보임을 확인하였다.