• Title/Summary/Keyword: 모션 검출

Search Result 118, Processing Time 0.034 seconds

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

Hand Motion Gesture Recognition at A Distance with Skin-color Detection and Feature Points Tracking (피부색 검출 및 특징점 추적을 통한 원거리 손 모션 제스처 인식)

  • Yun, Jong-Hyun;Kim, Sung-Young
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.594-596
    • /
    • 2012
  • 본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.

Passing Vehicle Detection using Local Binary Pattern Histogram (국부이진패턴 히스토그램을 이용한 측면 차량 검출)

  • Kang, Hyung-Sub;Cho, Dong-Chan;Ko, Kyung-Woo;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.260-263
    • /
    • 2010
  • 본 논문에서는 주행 중인 차량에서 전방을 향해 장착된 카메라를 통해 입력된 영상에서 측면에 부분적으로 나타나는 차량을 검출하는 방법을 제안한다. 기존 연구에서는 모션 벡터를 이용하여 주변 배경과 관측되는 차량 사이의 모션 벡터 차이를 이용하여 측면 차량을 검출하고 있다. 그러나 모션 벡터를 이용할 경우 정지된 차량이나 전방에서 다가오는 차량의 경우 검출하기 어려운 점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 모션 벡터를 사용하지 않고 차량 측면 모습에서 특징 정보를 추출하여 SVM 분류기를 통해 측면 차량을 검출하는 방법을 제안한다. 차량 측면 모습의 특징을 뽑기 위해 영상의 밝기 변화에 강인한 국부 이진 패턴을 사용하였고 ROI영역 내에서 차량이 나타나는 위치에 상관없이 차량의 측면 모습을 찾아내기 위해 국부 이진 패턴의 히스토그램을 이용하였다. 실험결과에서는 제안하는 방법이 정지된 차량을 포함하여 88.5%의 정확도로 측면 차량을 검출하는 것을 확인하였다.

  • PDF

A Study on Skew Measurement Technique for the Crane Spreader using a Camera (카메라를 이용한 크레인 스프레더 스큐모션 계측기술에 관한 연구)

  • Kawai, H.;Kim, Y.B.;Choi, Y.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.76-81
    • /
    • 2010
  • 본 논문에서는 카메라를 이용하여 크레인 스프레더의 스큐모션을 계측하는 계측기법에 대해 고찰하고 있다. 계측장치는 트롤리에 설치한 카메라와 스프레더에 설치한 두 개의 랜드마크로 구성된다. 랜드마크를 이용하여 크레인 스프레더 흔들림과 상하위치를 검출하는 기법은 저자들이 이미 제안한 기술이며 실험을 통해 그 유용성을 검증하였다. 크레인 스프레더의 스큐모션 계측기법 또한 제안된 계측기법에 기초한 것으로 두 개의 랜드마크를 검출하여 템플릿 매칭기법으로 스큐모션을 계측할 수 있다. 스큐모션은 스프레더의 회전각도를 검출하여 계측해야 하는데 계측정도와 신뢰도는 정확한 템플릿매칭의 가능여부에 의존하게 된다. 즉, 랜드마크의 회전으로 매칭이 실패할 경우에는 정확한 회전각도를 검출할 수 없는 경우가 발생할 수 있게 된다. 따라서 본 논문에서는 랜드마크 회전에 따라 템플릿을 회전시키는 방법을 도입하여 템플릿매칭의 신뢰성과 계측정도를 개선하는 방법에 대해 연구하였다. 제안된 방법을 이용할 경우 템플릿매칭이 실패하는 경우가 없음을 실험을 통해 확인하였으며, 측정범위는 ${\pm}12^{\circ}$ 이고 이것은 크레인 스프레더의 스큐모션을 파악하고 제어하는데 충분한 정도의 범위이다.

Real-time Face Detection using AdaBoost and Motion Detection (AdaBoost와 모션 검출을 이용한 실시간 얼굴 검출)

  • Ryu, Dong-Gyun;Lee, Jae-Heung
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.1020-1023
    • /
    • 2017
  • Viola와 Jones가 제안한 AdaBoost(Adaptive Boosting) 알고리즘은 기존의 물체 검출기에 비해 속도와 정확도 면에서 우수하여 실시간 물체 검출기로써 좋은 성능을 보인다. 하지만 여전히 많은 계산량 때문에 성능이 낮은 임베디드 환경에서는 실시간 검출에 대한 아쉬움이 있다. 본 논문에서는 계산량을 줄이기 위해 모션 검출을 통해 배경 영역을 제거하고 얼굴 영역을 추정한다. 제거된 배경 영역은 AdaBoost 알고리즘의 검출 과정에서 제외되며 추정된 얼굴 영역에 대해서만 검출을 하게 된다. 모션검출은 ${\Sigma}-{\Delta}$(Sigma-Delta) 배경 추정에 기반한 알고리즘을 사용한다.

The Hand Posture Recognition Using IR-Sensor Array (적외선센서 어레이를 이용한 손동작 검출 방법)

  • Song, Tae-Houn;Jeong, Soon-Mook;Jung, Hyun-Uk;Kwon, Key-Ho;Jeon, Jae-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.432-435
    • /
    • 2009
  • This paper proposes a hand posture recognition with pattern-matching method, embedding a simple paradigm using an Infrared sensor array. Our pattern-matching based hand posture recognition is specification supports fun and the user experience when communicating between humans and telecommunication devices, including robots. Our non-contact type input device (IR-Sensor Array) transmits commands to control mobile robots. It can also control Google Earth’s map searching programs, and other applications.

  • PDF

Vision-based human motion analysis for event recognition (휴먼 모션 분석을 통한 이벤트 검출 및 인식)

  • Cui, Yao-Huan;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.219-222
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 이벤트 검출 기술들은 많은 감시시스템들에서 유용하고 효율적인 응용 분야이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법에서의 이벤트는 입장( entering), 퇴장(exiting), 착석(sitting-down), 기립(standing-up)으로 구성된다. 제안된 방법은 하드웨어적인 센서를 사용하지 않고, MHI(Motion History Image) 시퀀스(sequence)를 이용한 인간의 모션 분석을 통해 이벤트를 검출할 수 있는 방법이며, 사람의 체형과 착용한 옷의 종류와 색상, 그라고 카메라로부터의 위치관계에 불변한 특성을 가진다. 에지검출 기술을 HMI 시퀀스정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이 정보를 이벤트 인식의 기본 특징으로 사용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비견 기술에 기반한 많은 감시시스템에 적용이 가능하다.

  • PDF

Pose Estimation of Face Using 3D Model and Optical Flow in Real Time (3D 모델과 Optical flow를 이용한 실시간 얼굴 모션 추정)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.780-785
    • /
    • 2006
  • HCI, 비전 기반 사용자 인터페이스 또는 제스쳐 인식과 같은 많은 분야에서 3 차원 얼굴 모션을 추정하는 것은 중요한 작업이다. 연속된 2 차원 이미지로부터 3 차원 모션을 추정하기 위한 방법으로는 크게 외형 기반 방법이나 모델을 이용하는 방법이 있다. 본 연구에서는 동영상으로부터 3 차원 실린더 모델과 Optical flow를 이용하여 실시간으로 얼굴 모션을 추정하는 방법을 제안하고자 한다. 초기 프레임으로부터 얼굴의 피부색과 템플릿 매칭을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역에 3 차원 실린더 모델을 투영하게 된다. 연속된 프레임으로 부터 Lucas-Kanade 의 Optical flow 를 이용하여 얼굴 모션을 추정한다. 정확한 얼굴 모션 추정을 하기 위해 IRLS 방법을 이용하여 각 픽셀에 대한 가중치를 설정하게 된다. 또한, 동적 템플릿을 이용해 오랫동안 정확한 얼굴 모션 추정하는 방법을 제안한다.

  • PDF

Camera Motion Detection and Key-Frame Selection from Region-Based Video Data (영역 정보를 이용한 비디오 데이터의 카메라 모션 검출 및 대표 프레임 선택 방법)

  • 이용현;강행봉;박용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.315-317
    • /
    • 1998
  • 많은 양의 비디오 데이터가 디지털화 되면서 사용자가 쉽게 자신이 원하는 비디오 데이터를 검색할 수 있는 내용 기반 검색이 필요하게 되었다. 내용 기반 검색을 위해서는 비디오 데이터를 연속된 카메라 모션으로 구성된 셧으로 나누고, 셧의 내용을 대표 할 수 있는 대표 프레임을 찾아야 한다. 대표 프레임은 비디오 데이터의 요약과 색인의 중요한 수단이다. 본 논문에서는 셧의 내용 기반으로 대표 프레임을 찾기 위해서 프레임에 존재하는 영역 정보를 바탕으로 셧의 내용을 알 수 있는 핵심 정보인 카메라 모션을 검출 하고, 이를 기반으로 대표 프레임을 선택하는 방법을 제안한다.

  • PDF

Video Based Human Motion Detection (비디오기반 사람의 모션 검출)

  • Lee, Chang-Soo;Park, Yeon-Chool;Park, Sae-Joon;Oh, Hae-Seok
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.879-883
    • /
    • 2000
  • 비디오 기반 사람의 모션 캡쳐에 관한 연구는 최근 몇 년 동안 컴퓨터 비전분야에서 폭넓은 연구가 진행되어지고 있다. 본 논문은 비디오 기반으로 사람의 모션을 전체 프레임이 진행되는 동안 프레임 별로 디스플레이 한다. 첫 프레임에서 비디오 세그멘테이션 과정에서 샷을 검출하고 이를 이용하여 객체를 분류한다. 분류된 객체에서 사람의 영역을 추출한다. 추출된 영역은 다음 프레임의 위치를 예측하게 된다.

  • PDF