• Title/Summary/Keyword: 모세관유동

Search Result 53, Processing Time 0.026 seconds

Pool Boiling Characteristics on the Microstructured surfaces with Both Rectangular Cavities and Channels (사각 공동 및 채널이 형성된 마이크로 구조 표면에서의 수조비등 특성연구)

  • Kim, Dong Eok;Park, Su Cheong;Yu, Dong In;Kim, Moo Hwan;Ahn, Ho Seon;Myung, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Design of Capillary Tube for a Refrigeration Systems (냉동시스템의 모세관 설계)

  • 정백영;함성훈;김태진
    • Journal of the KSME
    • /
    • v.33 no.11
    • /
    • pp.966-972
    • /
    • 1993
  • 모세관(capillary tube)은 일정면적식 팽창기구의 대표적인 것으로서 사용역사가 길고, 신뢰성이 높고, 가격이 저럼하므로 냉동공조시스템의 냉매제어장치로 매우 많이 사용되고 있다. 이것은 냉동시스템의 응축기와 증발기 사이에서 유입하는 고압의 액상냉매를 증발기에서 증발하기 쉬운 증발압력까지 압력을 강하시키는 감압팽창작용과 증발기의 증발 용량에 적당한 냉매 질량유량을 공급하는 역할 (이 작용은 냉동시스템의 용량과 작동범위를 결정하는데 매우 중요하다.)을 한다. 이 글에서는 모세관의 형상, 재질 및 그장 . 단점과 작동원리, 내부 유동현상 등 일반적인 사항에 관하여 기술한다.

  • PDF

Simulation of the flow characteristics of R1234yf flowing through capillary tubes (냉매 R1234yf의 모세관내 유동 특성에 관한 해석적 연구)

  • Kim, Daeyeong;Park, Chasik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6452-6457
    • /
    • 2014
  • R1234yf has been developed as an alternative refrigerant to R134a, which has been associated with global warming. The capillary tubes as expansion valves control the mass flow rate and balance system pressure in the refrigeration cycle. The present numerical model used the governing equations including the law of conservation of mass, momentum, and energy in a capillary tube. The mass flow rate of R1234yf decreased by 47.0% as the capillary tube length was increased from 1 to 4 m. As the inner diameter of the capillary tubes was changed from 1.3 to 1.7 mm, the mass flow rate of R134a and R1234yf increased by 117.9% and 121.0%, respectively. The mass flow rate of the R134a and R1234yf increased by 28.3% and 29.1% with subcooling increasing from 0 to $7^{\circ}C$. In addition, when the inlet temperature of the capillary tubes was changed from 35 to $60^{\circ}C$, the mass flow rate of R134a and R1234yf increased by 31.0% and 45.4%, respectively.

Analysis of Capillary Flow in Open-Top Rectangular Microchannel (상판이 없는 직사각형 단면의 미세채널에서 모세관 유동 분석)

  • Park, Eun-Jung;Cho, Ji-Yong;Kim, Jeong-Chul;Hur, Dae-Sung;Chung, Chan-Il;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Our study aims to understand the flow of liquid in an open-top rectangular microchannel that can be used in micro total analysis systems ($\mu$-TAS) because it has advantages in terms of light transmission and energy efficiency. We measured the liquid velocity using particle tracking technique and conducted a simulation with computational fluid dynamics by altering the area of channel cross section and channel length for the capillary-driven flow in the open-top rectangular microchannel. When liquid water drops to an entrance of the fabricated microchannel with a height of 20 μm and a width of 20 ${\mu}m$, it flows along the microchannel by only capillary force. In the wetting behavior of the liquid, important parameters of this flow are channel size, contact angle and liquid properties such as surface tension and viscosity, which are used to control the flow of liquid in the microchannel.

Study on the dynamics of capillary rise between elastic sheets (탄성박판간의 모세관 상승운동에 관한 연구)

  • Ahn, Won-Jin;Kim, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2743-2746
    • /
    • 2007
  • When a small tube is dipped into a liquid surface, surface tension forces cause the liquid in the tube to rise vertically against the gravity. When the tube is flexible, hydrostatic pressure difference caused by the capillary flow deforms the tube and the deformation which narrows the flow route changes the rising velocity. We study a simple model of this elastocapillary interaction in the context of the surface-tension-driven vertical rise of a liquid between two long flexible hydrophilic sheets that are held a small distance apart at one end. We provide an analytical theory for the rise rate of the liquid and show that our experiments are consistent with the theory.

  • PDF

Visualization for racing effect and meniscus merging in underfill process (언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화)

  • Kim, Young Bae;Kim, Sungu;Sung, Jaeyong;Lee, MyeongHo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.351-357
    • /
    • 2013
  • In flip chip packaging, underfill process is used to fill epoxy bonder into the gap between a chip and a substrate in order to improve the reliability of electronic devices. Underfill process by capillary motion can give rise to unwanted air void formations since the arrangement of solder bumps affects the interfacial dynamics of flow meniscus. In this paper, the unsteady flows in the capillary underfill process are visualized and then the racing effect and merging of the meniscus are investigated according to the arrangement of solder bumps. The result is shown that at higher bump density, the fluid flow perpendicular to the main direction of flow becomes stronger so that more air voids are formed. This phenomenon is more conspicuous at a staggered bump array than at a rectangular bump array.

Numerical Simulation Model of Alternative Refrigerants Flow Through Capillary Tubes (대체냉매의 모세관내 유동 시뮬레이션)

  • 장세동;노승택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • A numerical model of refrigerant flow through a capillary tube is developed, which considers the effects of underpressure for vaporization, kinetic energy, and roughness of capillary tube. The numerical model is based on homogeneous flow assumptions for the two-phase flow region. A characteristic chart of HFC refrigerants flow through capillary tubes and correction factor chart of geometry and relative roughness of capillary tube to select a proper capillary for refrigerating machines using alternative refrigerants is presented by this numerical model.

  • PDF

A Simulation for predicting the Refrigerant Flow Characteristics Including Metastable Region in Non-Adiabatic Capillary Tubes (증발 지연 구간을 포함한 비단열 모세관에서의 냉매 유동 특성 예측을 위한 시뮬레이션)

  • Son, Ki-Dong;Park, Sang-Goo;Jeong, Ji-Hwan;Kim, Lyun-Su
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.263-270
    • /
    • 2008
  • The capillary tube/suction line heat exchanger (SLHX) is widely used in small refrigeration systems. The refrigerant flowing in the SLHX experiences frictional and accelerational head losses, flashing, and heat transfer simultaneously. The simulation of refrigerant flow through SLHX is important since this will help engineers analyze and optimize the SLHX incorporated in a refrigeration system. The present SLHX model is based on conservation equations of mass, momentum and energy. Also a meta-stable model is included. All these equations are solved simultaneously. In this paper, HFC-134a refrigerant flow through a non-adiabatic capillary tube is simulated. The simulation results are discussed but not validated against experimental measurements yet.

  • PDF

Modeling of Capillary Filling Length in Silwet L-77 Added Poly(Dimethylsiloxane) (PDMS) Microchannels (Silwet L-77 이 포함된 Polydimethylsiloxane(PDMS) 마이크로 채널의 유동 길이 모델링)

  • Lee, Bom-Yee;Lee, Bong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.823-829
    • /
    • 2014
  • In the present study, simple models were proposed to predict the capillary-driven flow length in a surfactant-added poly(dimethylsiloxane) (PDMS) rectangular microchannel. Owing to the hydrophobic nature of PDMS, it is difficult to transport water in a conventional PDMS microchannel by means of the capillary force alone. To overcome this problem, microchannels with a hydrophilic surface were fabricated using surfactant-added PDMS. By measuring the contact angle change on the surfactant-added PDMS surface, the behavior was investigated to establish a simple model. In order to predict the filling length induced by the capillary force, the Washburn equation was modified in the present study. From the investigation, it was found that the initial rate-of-change of the contact angle affected the filling length. Simple models were developed for three representative cases, and these can be useful tools in designing microfluidic manufacturing techniques including MIcroMolding In Capillaries (MIMIC).