• 제목/요약/키워드: 모빙 지수

검색결과 2건 처리시간 0.014초

집단 따돌림 희생자 관리 개선을 위한 모빙 지수 알고리즘 - 소셜 네트워크 기반 군 조직을 중심으로 - (Mobbing Value Algorithm for Improvement Victims Management - based on Social Network in Military -)

  • 김국진;박건우;이상훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.1-12
    • /
    • 2009
  • 집단따돌림(모빙: Mobbing, 이하 '모빙')은 사회 전반에 걸쳐 빠르게 확산되고 있으며 군 조직도 예외가 될 수 없다. 군 조직에서의 모빙 현상은 성인사회 따돌림의 형태인 심리적 배제뿐만 아니라 때로는 심리적, 신체적 괴롭힘까지 나타나기 때문에 자살이나 난동 같은 심각한 군기 사고로 이어지기도 한다. 특히 군 조직에서는 집단 따돌림 예방을 위한 여러 가지 제도 및 관리방안의 시행에도 불구하고 그 피해자가 계속 발생하므로 문제 해결을 위한 어떤 제도와 관리방안을 마련하는 것 보다 그 희생 대상자와 잠정적 희생 대상자를 파악하는 것이 보다 효율적이라는 것을 말해준다. 따라서 본 논문에서는 이러한 문제 해결을 위해 모빙 현상에 관련된 7개의 요소(Factor)와 그 하위에 포함된 50개의 속성 (Attribute)들을 선정한다. 이후 자체 개발한 Gunwoo's 소셜 네트워크 서비스를 이용하여 나와 커뮤니티를 형성한 그룹들에 대해 연관성 유무에 따라 관계가 있으면 '1', 관계가 없으면 '0'으로 표현하여 지수화 한다. 그리고 나와 사용자들 간의 유사도 산정을 위해 유사도 함수(Dice 계수)를 적용한다. 다음으로 SPSS 클레멘타인의 인공신경망(ANN: Artificial Neural Network) 알고리즘을 통해 7개 요소들에 대한 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing Value(이하 '모빙 지수')를 산정하기 위한 알고리즘을 제안한다. 이 알고리즘은 현재의 모빙 희생자와 잠정적인 희생자를 파악하여 희생자 관리 개선에 도움이 될 것이다.

온라인 소셜 네트워크에서 사용자 프로파일 기반의 모빙지수(Mobbing-Value) 알고리즘 (Mobbing-Value Algorithm based on User Profile in Online Social Network)

  • 김국진;박건우;이상훈
    • 정보처리학회논문지D
    • /
    • 제16D권6호
    • /
    • pp.851-858
    • /
    • 2009
  • 집단 따돌림을 청소년 문제로 국한했던 것과는 달리 오늘날 직장 내 집단 따돌림은 커다란 문제로 대두되고 있다. 국제 노동기구(ILO)의 따돌림 관련 유수의 보고와 국내의 경우를 볼 때 직장 내 따돌림 경험 응답 비율이 9.1%('03)에서 30.7%('08)로 증가하고 있다. 이러한 따돌림은 개인적, 사회적으로 커다란 손실을 초래한다. 제안한 알고리즘은 사용자 프로파일을 통해 현재 Mobbing(집단 따돌림)1) 희생자뿐 만 아니라 잠정적인 Mobbing 희생자의 가능성을 파악하여 효율적인 인원관리가 가능하다. 본 논문에서는 Mobbing 현상에 관련된 사용자 프로파일 즉, 7개의 요소(Factor)와 그 하위에 포함된 50개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 ‘1', 관계가 없으면 ‘0'으로 표현한다. 그리고 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들이 포함된 요소가 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 online social network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G22) Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the online social network, Bullies, Aggressive victims, Victims)에 매핑하여 사용자들의 Mobbing 성향을 파악하고 이를 토대로 효율적인 인원관리에 기여할 수 있다.