• Title/Summary/Keyword: 모멘트강도

Search Result 492, Processing Time 0.023 seconds

Vertical Direction Redistribution of Beam Moments in the Seismic Design of RC Frame (RC 골조의 내진설계에서 보 모멘트의 수직방향 재분배)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • For the lateral load resistance of a RC frame in a medium risk seismic zone, the strength of lower story beams and columns should be larger than those of the upper stories. However, the lateral loads can be accommodated by redistributing design beam moments vertically as well as horizontally so all beams end up with identical strengths. This paper looks at the impact of the vertical redistribution of beam moments to provide identical beam strength over as many floors as possible. Two-bay six-story RC frame was designed with and without vertical beam moment redistribution and its seismic performance were evaluated by using push-over limit analysis and by non-linear time history dynamic analysis. Analytical results show that with the use of vertical beam moment redistribution the increase in the ductility demand is similar to the proportion of moment redistribution applied, but this additional demand is below the ductility capacity of well detailed RC members.

Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames (철골 연성 모멘트 골조의 연성계수 및 강도계수 평가)

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.793-805
    • /
    • 2004
  • The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.

RC Wall under Axial Force and Biaxial Bending Moments (축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.113-124
    • /
    • 1998
  • Numerical study using nonlinear finite element analysis is done for investigating behavior of isolated reinforced concrete walls subject to combined in-plane and out-of-plane bending moments and axial force. A method for estimating the ultimate strength of wall is developed, based on the analytical results. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. An existing unified method combining plasticity theory and damage model is used for material model of reinforced concrete. By numerical studies, the internal force distribution in the cross section is idealized, and a new method for estimating the ultimate strength of wall is developed. According to the proposed method, variation of the interaction curve of in-plane bending moment and axial force depends on the range of the permissible axial force per unit length that is determined by the given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, which indicates a decrease in the ultimate strength. The proposed method is compared with an existing method using the general assumption that strain shall be directly proportional to the distance from the neutral axis. Compared with the proposed method, the existing method overestimates the ultimate strength for walls subject to low out-of-plane bending moments, and it underestimates the ultimate strength for walls subject to high out-of-plane bending moments.

Experimental Study on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported (모멘트 분포 형상에 따른 철근콘크리트 단순보의 유효 단면2차모멘트에 대한 실험적 연구)

  • Park, Mi-Young;Lee, Seung-Bae;Kim, Kang-Su;Kim, Sang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.329-332
    • /
    • 2008
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete structures, and the concept of the effective moment of inertia has been generally used for the estimation of beam deflections. The KCI design code adopted Branson's equation for the calculation of the effective moment of inertia, which was formulated based on the results of beam tests subjected to uniformly distributed loads. Therefore, it is worthwhile to check the applicability of the code approach on the estimation of the effective moment of inertia for the cases of beams under different loading conditions. In this study, an experimental investigation has been conducted on six beams, where primary variables were concrete compressive strengths and loading distances from supports. The test results were compared with various approaches proposed by Branson and others as well. The test results indicated that the effective moment of inertia was somewhat influenced by the moment distribution shape. Despite the different moment distribution shapes for specimens, however, the effective moment of inertia of all test beams were closely predicted by the existing methods considered in this study.

  • PDF

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

船殼거더의 最終崩壞强度 解析法 및 簡易計算式에 관한 硏究 動向

  • 백점기
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.50-54
    • /
    • 1995
  • 선박의 구조설계단계에서 최종붕괴강도를 설계기준으로 삼는 경우는 거의 없으나 최근에 각국 선급에서 최종붕괴강도를 의무적인 설계기준으로 삼기 위해 자체적인 해석법과 설계식을 제시 하고 규정화하는 작업을 진행시키고 있다. [12, 17, 31, 32]. 1994년 ISSC [1]에서도 토론된바와 같이 특히 새로운 구조방식을 가진 선박의 합리적인 구조설계를 위하여는 해상플렛폼의 구조설 계시와 마찬가지로 삼아야 할 것이다. 본고에서는 선각거더의 최종붕괴강도에 대한 해석법과 간이계산식에 관한 연구동향을 문헌조사를 통하여 분석하였다. 그 결과 순수굽힘모멘트가 작용 하는 문제의 경우 최종붕괴강도 해석법은 어느정도 확립되었다고 판단되지만 최종붕괴강도의 간이계산식은 아직도 정도 등의 면에서 개선의 여지가 남아 있다고 생각된다. 앞으로 순수 굽 힘모멘트뿐만아니라 조합하중을 받는 경우와 피로균열을 비롯한 초기구조손상을 가진 노후화된 선박에 대한 최종붕괴강도를 보다 정밀하게 해석하기 위한 해석법의 개발과 간이계산식의 도 출이 필요하다고 사료된다. 또한, 충돌, 좌초, 폭발 등에 기인된 선각거더의 붕괴강도 평가를 위한 해석법의 개발도 앞으로 남은 과제중의 하나이다.

  • PDF

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Analysis of CFT Column-RC Flat Plate Interior Connections under Lateral Load (횡하중을 받는 CFT기둥-RC무량판 접합부의 해석연구)

  • Song, Jin-Kyu;Song, Ho-Bum;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.867-870
    • /
    • 2008
  • Flat plate system has many advantages, story height reduction, a term of works shortening and changeableness of space, etc. However structures become a tendency of higher stories and when we use RC column, the size of column grow larger. For this reason the use of CFT column is increasing more and more. Accordingly, this study carried out the nonlinear finite element analysis. As a result of analysis moment strength of the connection increased but ductility decreased as the top reinforcement ratio in th effective width increased. And moment strength and ductility of the connection decreased as gravity load ratio decreased. In the case that shearhead length is not more than 0.27m, the effectiveness of shearhead length on the moment strength and ductility of the connection were small relatively to other variables. Initial stiffness and moment strength of connection increased as slab thickness increased

  • PDF

Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels (이종강종을 사용한 고강도 CFT 합성부재의 구조성능)

  • Choi, In Rak;Chung, Kyung Soo;Kim, Jin Ho;Hong, Geon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.711-723
    • /
    • 2012
  • Structural tests were performed to investigate the structural performance of concrete-filled steel tube column using different strength steels in their flange and web with high-strength steel HSA800 and mild steel SM490, respectively. The test parameters included the strength of column flange and infill concrete, and effect of concrete infill. Connection between different grade steels were welded using the electrode appropriate for mild steel and verified its performance. To evaluate the behavior of test specimens, eccentric loading tests were performed and the results were compared with the prediction by current design codes. Axial load and moment carrying capacity of test specimens increased with the yield strength of compression flange and weld fracture occurred after the specimen shows full strength. The prediction result for axial load-bending moment relationship and effective flexural stiffness gave good agreement with the test result.

Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members (고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석)

  • 연정흠;이제일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A methods to calculate non-linear moment-curvature relations of high-strength PSC flexural members for numerical analysis has been proposed. The moment-curvature relations were calculated with assumptions of design codes and by the layer method. The results of the proposed procedures for moment-curvature relations and numerical analysis were compared with those of pre-existing tests. The absorption energy rate of the design codes was about 30% larger than that of the layer method. The ultimate load and the external work of the layer method were 90% and 85% of those of tests, respectively The ultimate load of the strength design method was 97% of that of tests, but the external work was over-estimated with 122%. The ultimate load and external work by the proposed equation of the CEB-FIP Model Code were 113% and 173% of those of tests, respectively. It show that the use of ultimate strain of 0.0035 should be over-estimated for high-strength concrete. The procedure of non-linear numerical analysis of this research could be stably simulated the behavior of concrete flexural members until the ultimate state, and calculate results of the load-deflection relation and cracking pattern were very similar with those of tests.