• Title/Summary/Keyword: 모르타르 성능

Search Result 364, Processing Time 0.021 seconds

Preparation of High Range Water Reducers Containing Carboxylic Acid and Their Cement Dispersion Properties(III) (카르본산계 고성능감수제의 제조 및 그들의 시멘트 분산특성(III))

  • 김원기;황재현;김우성;김영진;강인규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.161-169
    • /
    • 1996
  • Styrene-maleic anhydride copolymers with different composition (1:1SMA. 5:1SMA) were synthesized and further reacted with sulfuric acid to obtain water soluble copolymers (1:1SSMA, 5:1SSM.4). In the flow experiments of cement mortar mixed with copolymers, 5:1SSMA showed higher fluidity than 1:1SSMA. The cement mortar mixed with 1% 5:1SSMA maintained 95% of original flow after 60 min. On the other hand, the compressive strength of the hardened cement mortars containing 0.5% copolymers after 28 days curing was also examined. The compressive strength of hardened cement mortar containing 5:1SSMA was increased up to 41% compared to the plain while 1:1SSMA was increased up to 29%. As the results, the 5:1SSMA used in this study are greatly expected as a new high range water reducers for the concrete.

Evaluation of Diffusion on Cement Mortar and Durability of Concrete Specimen Using Inorganic Coating Material and Surface Treatment System (무기질 도료 및 표면처리 시스템을 적용한 시멘트 모르타르와 콘크리트의 내구성 평가)

  • Kim, In-Seob;Lee, Jong-Kyu;Chu, Yong-Sik;Kim, Tae-Hyun;Shim, Kwang-Bo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. However, such high durable structure is often attacked by some environmental condition such as chloride diffusion, carbonation and so on. In order to prevent the deterioration behaviors of concrete structures. We estimated durability of concrete when used surface treatment system and coatings by new type inorganic coating materials. Base on the results of chloride ion's diffusion test, the coated cement mortar had smaller transmitted quantity.

Sulfate Attack Resistance and Microstructural Observations of Cement Matrix Exposed to a Low Temperature Condition (저온환경에 노출된 시멘트 경화체의 황산염침식 저항성 및 미세구조적 조사)

  • Lee, Seung-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.611-617
    • /
    • 2009
  • This paper reports an experimental study on the damage mechanism and resistance of Type I portland cement mortar and paste samples exposed to 5% sodium sulfate solution with different solution temperatures; namely, $4^{\circ}C$, $10^{\circ}C$ and $20^{\circ}C$. The resistance of mortar samples was evaluated using expansion, compressive strength and flexural strength measurements. Some microstructural observations such as x-ray diffraction, differential scanning calorimetry and scanning electron microscopy were also introduced to elucidate reactants formed by sulfate attack, especially in a low temperature condition. From the results, it was found that the degree of damage in the mortar samples was significantly associated with the temperature of sulfate solution. Low temperature of the sulfate solution led to the formation of thaumasite in mortar and paste samples, and subsequently a poor resistance to sulfate attack. Thus, it is noted that when concrete structures are exposed to sulfate media in the condition of a cold region or whether, special care should be taken.

Mechanical and Repair Performance of Sprayed Ductile Fiber Reinforced Cememtitious Composite(ECC) (습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능)

  • Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.462-469
    • /
    • 2003
  • This paper presents an experimental study on the potential durability enhancement of infrastructures repaired by a sprayed high ductile fiber-reinforced cementitious composite (ECC). For this study, a PVA-ECC which exhibits sprayable properties in the fresh state and tensile strain-hardening behavior in hardened state was sprayed and tested. The experimental results show that the sprayed ECC exhibits mechanical properties with strain capacity comparable to the cast ECC with the same mix design. During loading, the crack widths of ECC are tightly controlled with an average of 30${\mu}m$. It is also revealed that when sprayed ECC is used as a repair material, ductility represented by deformation capacity at peak load of repaired beams in flexure are obviously increased in comparison to those of commercial prepackaged mortar (PM) repaired beams. In addition to high delamination resistance, the significant enhancement of energy absorption capacity and crack width control in ECC repair system suggest that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

The Bond Characteristics of Ultra Rapid Hardening Mortar for Repair using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 이용한 초속경 보수 모르타르의 접착특성)

  • Lee, Sun-Ho;Kwon, Hee-Sung;Paik, Min-Su;Ahn, Moo-Young;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • Ultra Super Early Strength Cement is a material that satisfies these requirements. early hydration heat however, is significant over regular concrete, thus discretion is advised for thermal cracks in accordance with heat generation when constructing a large-scale structures. In addition, the negative point that it is difficult to achieve required strength in a short period of time following rubbing process while retaining workability, the cement is being used conditionally for engineering material and Ultra Super Early Strength Cement for maintenance material for construction doesn't exist. Magnesia Phosphate Cement, which is currently under studies in overseas uses no extra admixture and has strong points of Ultra Super Early Strength as well as favorable construction-ability and adhesive stability to the prototype concrete. These factors stem recognition that it could be used as maintenance material for construction of diverse applicability. In order to provide necessary data to increase practicality of the magnesia phosphate cement for Ultra Super Early Strength Mortar, the study carried out simulate experiment on member of framework to review field applicability.

  • PDF

Review: Utilization of Coal Bottom Ash for Concrete and Mortar (총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용)

  • Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.333-348
    • /
    • 2020
  • The present review dealt with the state-of-art on utilization of coal bottom ash in cement-based concrete and mortar. Two types of bottom ashes generated from pulverized coal combustion and circulating fluidized-bed combustion systems have been considered. The production process, chemical and physical characteristics of both ashes, and the methodology of utilization in various cement composites are summarized. The effect of bottom ash on various properties of concrete, such as workability, strength, and durability, were reviewed from the literature. In addition, the environmental and economic aspects of utilizing bottom ash in concrete are analyzed to explore the perspectives of bottom ash utilization, and through this, the future of the utilization was considered. The effect of bottom ash on the performance of concrete and mortar was greatly depended on the condition, pretreatment, and processing of the ash. Additional processing such as crushing might contribute to stimulating the utilization in this field. In particular, if economic support is possible in terms of policy, utilization rate is expected to be improved.

Strengthening of Non-ductile Reinforced Concrete (RC) frames with Expansive Joint Mortar and H-beam Frame (팽창형 접합부 모르타르와 H형강 프레임에 의한 비내진 상세를 갖는 철근콘크리트 골조의 내진보강)

  • Kim, Ji-Hyeon;Jang, Seok-Joon;Yun, Da-Ae;Kim, Dae-Young;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.127-135
    • /
    • 2019
  • The seismic performance of non-ductile reinforced concrete (RC) frame retrofitted with H-beam frame and cast expansive mortar into joint between existing RC frame and H-beam frame is investigated experimentally and analytically. RC frames considered in the study contain non-ductile reinforcement details of low-rise school building constructed in Korea before 1988. The tests were conducted on half-scale specimens simulating the lower frame assemblages of a typical school building. Two one-bay, one-story RC frames with and without retrofitting with H-beam frame and expansive joint mortar were tested to failure. Test and analysis results indicated that seismic strengthening using H-beam and expansive joint mortar significantly improved the lateral strength and stiffness of non-ductile RC frame without installing anchor bolts to fit H-beam frame into existing RC frame. The effectiveness of seismic strengthening technology proposed in the study for non-ductile RC frame was verified experimentally and analytically.

Utilization of Ready-mixed Concrete Recycling Water Mixed with Hot-rolled Slag Containing C12A7 and Application Characteristics of Cement Mortar (C12A7을 함유한 열연슬래그를 혼입한 레미콘 회수수 활용 및 시멘트 모르타르의 적용 특성)

  • Kim, Young-Yeop;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.92-99
    • /
    • 2021
  • CaO-based by-products composed of CaO, SO3, Al2O3, etc. are generally used as raw materials for CaO compounds. When applied to the recovered water of ready-mixed concrete, the hydration reaction of the powder material is accelerated and concrete performance can be improved. In this study, activated sludge was prepared to apply to the recovered water of ready-mixed concrete by mixing CaO-based hot-rolled slag(C12A7) in the recycling water of ready-m ixed concrete. Cem ent paste setting time and mortar compressive strength performance tests confirmed the effect on the hydration reaction. Therefore, the possibility of concrete application using activated sludge was confirmed.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.

보수용 모르타르의 강도 및 투과특성에 관한 연구

  • 백신원
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.378-383
    • /
    • 2003
  • 콘크리트 구조물은 여러 가지 원인에 의해 손상을 입거나 시간이 지남에 따라 노후화가 진행된다. 이와 같이 손상을 입거나 노후화가 진행된 구조물은 그 내구성능이 저하되어 계속 사용하기 위해서는 보수를 하거나 보강해야만 한다. 구조물을 보수하거나 보강하는 것은 구조물의 수명을 크게 연장하는 일로 여러 가지의 경제적인 효과가 있기 때문에 이에 대한 연구와 공법 개발 등이 활발히 이루어지고 있다.(중략)

  • PDF