• Title/Summary/Keyword: 모드인자

Search Result 172, Processing Time 0.029 seconds

A Method to Determine Optimum Viscoelastic Layer Thickness of Sandwich Plate for Maximum Modal Damping (샌드위치 평판의 모드 감쇠 최대화를 위한 점탄성층 두께 결정법)

  • Nam, Dae-Ho;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.690-696
    • /
    • 2006
  • Thickness of damping layer in sandwich plate needs to be optimized in order to make modal loss factor of the sandwich plate maximum. Since previous studies were interested in noise reductions over high frequency range, the modal properties were derived based on simply supported boundaries. This conventional formula is approximately applicable to other boundary conditions over high frequency range only. The purpose of this study is to propose a method to determine optimum damping layer thickness of sandwich plate for maximum modal damping in low frequency range when the boundary condition is not a simple support. The conventional RKU equation based on simply supported boundary is modified to reflect other boundary conditions and the modified RKU equation is subsequently applied to determine the optimum damping layer thickness for arbitrary conditions. In order to reflect frequency-dependent characteristics of elastic modulus of the damping layer, an iteration method is proposed in determining the modal properties. Test results on sandwich plates for optimum damping layer thickness are compared with predictions by the proposed method and conventional method.

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Development of a Dispersion Analysis Program for the Liquid Rocket Engine and its Application (액체로켓 엔진 성능 분산해석 프로그램의 개발 및 응용)

  • Park, Soon-Young;Nam, Chang-Ho;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we developed a dispersion analysis program of the gas-generator cycle liquid propellant rocket engine by expanding the mode analysis software(GEMAT). The performance dispersions of an engine that are arisen from the internal dispersion factors of engine's sub-components were formulated and solved to find the effects of each dispersion factor. We were also able to present the calculation method to find the required pressure margin for the compensation of those dispersion to satisfy the required performances of engine. Using this method, we could propose a novel procedure of compensating during the ground firing test which would induce the performance improvement by lessening the pumps discharge pressures or augmenting the combustion chamber pressure.

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

Sensitivity Analysis on Hybrid Element Model for Harbor Oscillation (항만 공진에 대한 복합요소 수치모형의 민감도 분석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.174-184
    • /
    • 1996
  • In the present study, for fully-open rectangular harbors, sensitivity analyses are made for the major parameters which are relevant to the practical application of a hybrid element model widely used fur the analysis of harbor oscillation. The results show that it is desirable to extend the finite element region to the area in which depth change is not large and that it is appropriate to take the depth of the outer region for analytic solution as the average along the boundary between the two regions. It is expected that the number of Fourier components of the analytic solution may not be important for a constant-depth simple-shaped harbor but its significance may increase for harbors of varying depth and complex geometry. It is found that the effect of incident wave direction is not significant for the first resonance mode but its effect becomes important as the bottom slope increases, especially for the higher resonance modes.

  • PDF

The Flight Trajectory of a Boomerang Simulated with Helicopter Theories (회전익 이론을 이용한 부메랑의 비행 궤적 연구)

  • Jang,Se-Myeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • The flight trajectory of a boomerang is predicted with the momentum theory (actuating disk theory) and the blade element method generally used as tools to analyze in the rotary-wing aerodynamics. Boomerangs made by students are actually compared with the computational results, utilized to get the physical intuition. The transition from helicopter mode to autogyro mode with the gyroscopic precession is observed in numerical analysis and experiment like a 'flying rotor' after the boomerang taking off. The whole system is shown to be highly nonlinear and very sensitive to the initial conditions. Various flight loci may be obtained if we change the parameters.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

A Study on Resonance Properties of a Terahertz Asymmetric Split-Loop Resonator Type Metamaterial for High Quality Factor (테라헤르츠 비대칭 분리고리공진기 메타물질의 높은 품질인자를 위한 공진 특성에 관한 연구)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.663-669
    • /
    • 2016
  • A terahertz asymmetric split-loop resonator (ASLR) was analyzed for use in high-sensitivity sensing applications. Its structural asymmetricity induces an asymmetric Fano resonance which has a high quality factor compared to the symmetric eigen-resonance. The variations of the resonant frequency, transmission coefficient, and quality factor of the ASLR in the eigen and Fano resonances are analyzed as a function of its structural asymmetricity. Also, the surface current densities on the ASLR in both resonances are calculated to analyze the main cause of the variations of its transmission characteristics. The surface current of the ASLR in the eigen resonance shows a dipole resonance, which increases the radiation loss and reduces the quality factor. On the other hand, the surface current of the ASLR in the Fano resonance shows a trapped or quadrupole mode which has a low radiation loss. Therefore, the ASLR operated in the Fano resonance has a high quality factor. Terahertz, high-performance filters and high sensitivity sensors can be developed based on our analysis results of the ASLR having a high quality factor. These high-performance devices based on terahertz metamaterials could increase the adoption of terahertz industrial applications.

Stabilization of Abnormal Combustion of Dry Low NOx Gas Turbine Combustor for Power Generation (발전용 저 NOx 가스터빈의 연소 불안정 안정화에 관한 연구)

  • 정재모;안달홍;박정규
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • Stabilization and reduction of combustion noise and NOx emission from dry low NOx combustor of GE MS7001F gas turbine were achieved. Dry low NOx gas turbines that adopt the lean premixed combustion technology frequently generate the flame instability and high NOx emissions if not adequately tuned. Dynamic pressure oscillation during the combustion mode transfer increased as ambient temperature decreased with frequency of 80㎐ and magnitude of 4-9 psi. Effects of both combustor tuning for uniform fuel flow with burner nozzles and fuel pre-filling into transfer fuel valves on stabilisation of the dry low NOx combustor were very significant. Dynamic pressure oscillation during the combustion mode change was decreased up to 2.5 psi. Also, NOx emission from GE7F DLN-1 combustor can be maintained as low as 35-43ppm (15% O$_2$) in base load operation of 150 MW.

Accelerated Life Test Design of Bladder Type Accumulator Assembly for Helicopter (헬기용 블래더형 축압기 조립체의 가속수명시험 설계)

  • Kim, Dae-Yu;Hur, Jang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.239-245
    • /
    • 2018
  • The importance of reliability in the development of weapons systems and reliability tests has been emphasized recently. Therefore, this study evaluated a reliability test design method of a bladder type accumulator and proposed a process for reliability test design. To design the reliability test of the accumulator, the main failure modes and failure mechanisms were investigated, and the main stress factors were analyzed to select the appropriate acceleration model. A steady - state reliability test was designed according to the number of samples, and the reliability level and accelerated life test time were calculated according to the acceleration factor computed using the selected acceleration model.