대규모순환패턴과 같은 기후시스템에서의 상태와 변화를 정량화하여 나타낸 기상인자는 수문기상학적 변수와 밀접한 연관이 있는 것으로 알려져 있으며, 이에 따라 비정상성 빈도해석의 수행에 있어서 확률분포모형의 매개변수에 대한 공변량으로 널리 활용되고 있다. 본 연구에서는 비정상성 강우빈도해석 시 매개변수의 공변량으로 우리나라의 극치강우의 장기경향성을 잘 반영할 수 있는 기상인자를 선정하고자 한다. 먼저, 시계열자료를 주기성을 가지는 내재모드함수와 장기경향성을 나타내는 잔여값으로 분해할 수 있는 앙상블 경험적 모드분해법을 이용하여 우리나라 전역에 분포된 61개 지점에서 관측된 연 최대치 강우자료의 평균 및 분산에 대한 잔여값을 추출하였다. 다음으로 11개의 월 단위 기상인자에 대한 계절별 연 평균 시계열과 추출된 평균 및 분산의 잔여값과의 상관계수를 산정하였다. 그 결과, 11개의 기상인자 중 Atlantic Meridional Mode (AMM), Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation (NAO)가 우리나라 연 최대치 강우자료의 평균 및 분산에 대한 장기경향성과 높은 상관성이 있는 것으로 나타났다. 계절적으로는 AMM과 AMO의 경우 이전 년도 가을철 평균이 전 지점 평균 약 0.6, NAO는 이전 년도 여름철 평균이 전 지점 평균 0.3 이상의 유의한 상관계수를 가지는 것으로 나타났다.
현실세계에서 관찰되는 시그널(signal)은 다양한 주파수(frequency)들의 시그널로 혼합되어 있는 경우가 많다. 예를 들어 태양 흑점 자료의 경우 약 11년 주기와 85년 주기로 변동한다는 사실은 널리 알려져 있다. 또한 경제 시계열 자료의 경우는 통상적으로 계절요인(seasonal component), 순환요인(cyclic component) 그리고 장기적인 추세요인(long-term trend)으로 분해하여 분석한다. 이러한 시계열 자료를 구성요소별로 분해하는 것은 오래된 주제중 하나이다. 전통적인 시계열자료 분석기법으로 스펙트럴 분석기법 등이 널리 사용되고 있으나 시계열 자료들이 비정상(nonstationary)일 경우에는 적용하기 어렵다. Huang et. al(1998)은 경험적 모드분해법(empirical mode decomposition)이라고 하는 자료적응적인(data-adaptive) 방법을 제안하였는데, 비정상성(nonstationarity)에 대한 강건성(robustness)으로 여러 분야에 널리 응용되고 있다. 그러나 Huang et. at(1998)은 잡음(error)에 의해 오염된 자료에 대한 구체적인 처리방법은 제시하지 못하고 있다. 본 논문을 통하여 효율적인 잡음제거 방법을 제안하고자 한다.
본 논문에서는 경험적 모드 분해 방법을 이용하여 시각자극 출현에 따른 과제 수행 시 발생하는 뇌 유발전위의 ${\theta}$와 ${\alpha}$대역에 대한 진폭과 위상변화를 확인하였다. 과제수행에 대한 뇌 유발전위를 구성 주파수 대역 별로 분해하기 위하여 경험적 모드 분해 방법을 적용하였고, 분해된 각 내재모드함수에 힐버트 변환을 적용하여 뇌 유발전위의 ${\theta}$와 ${\alpha}$대역의 순간 진폭과 위상 변화를 확인하였다. 과제 수행 시 뇌 유발전위의 P2, N2과 P3지점에서 ${\theta}$와 ${\alpha}$대역의 진폭이 크게 관찰되었으며, N1, P2부근에서 순간 위상의 변화가 최대가 되었다. 시각 자극 출현에 따른 응시 상태에서는 두 대역 모두 관련된 위상 변화시점이 확인되지 않았다. 대역통과필터 방법 적용 시, 경험적 모드 분해 방법에 비해 시간과 주파수 해상도가 떨어졌으며, 필터의 파라미터에 따라 위상 변화 시점의 결과에 차이가 발생하였다. 연구를 통해 ${\theta}$와 ${\alpha}$대역이 시각 자극 출현에 따른 과제 수행에 대한 뇌 유발전위의 주요성분인 ${\theta}$와 ${\alpha}$대역의 위상변화와 뇌 유발전위의 생성을 위상 변화와 연관 지어 해석하였다.
판과 같은 구조물의 손상 감지를 위해, 손상 전 구조물의 임피던스 신호를 기저신호(Baseline impedance signal)로 이용하여 직접적으로 비교하지 않는 새로운 개념의 무기저 손상진단 기법(Reference-free impedance method)을 제시한다. 박막 압전소자(이하 PZT)를 판의 상하 표면에 부착시킨 한 쌍의 병치 PZT를 이용하여 손상으로 인해 모드변환을 일으키는 전기역학적 신호(Electro Mechanical Signatures ; 이하 EMS)를 추출한다. 이 연구에서는 스펙트럼 요소법(Spectral Element Method ; 이하 SEM)을 이용하여 주파수 영역에서 병치된 PZT의 EMS를 파악하기 위한 수치해석을 수행한다. 특히, 손상에 의해 발생된 모드변환 EMSMC를 병치된 PZT의 극성에 기인한 신호분해 기법을 적용하여 추출하고, 분해된 모드변환 EMSMC가 손상의 위치와 크기에 따라 받는 영향을 추가로 분석한다.
본 연구에서는 패턴인식과 영상압축을 목적으로 다치영상의 형태론적 형상분해법을 제안하였다. 다치영상내에 포함된 형상들을 직접적으로 기술하는 방법은 데이터 압축과 계산시간의 측면에서 그 효과를 기대할 수 없다. 따라서 본 연구에서는 2진수로 표현되는 화소 값을 그레이 코드로 변환한 다음, 그레이 코드로 변환된 화소들 중에서 특정비트가 1인 화소들만을 선택해서 얻은 8개의 비트평면 영상에 포함된 형상을 형태론적 멀티모드 형상분해 알고리즘을 적용하여 분해하였다.
기존의 Scanning Laser Acoustic Microscope (SLAM)에 횡파를 사용함으로써 분해능을 개선시키는 방법을 연구하였다. 액체-고체 경계에서는 모드 변환이 발생하여 액체에서 입사되는 종파 에너지의 일부분은 고체 시험편 내에서 횡파 에너지로 변환된다. SLAM의 분해능은 수신측의 레이저 빔 폭과 입사되는 초음파의 파장에 의하여 결정되고, 고체에서 횡파의 파장은 같은 주파수의 종파의 파장보다 짧기 때문에 횡파를 사용한다면 높은 분해능을 얻을 수 있다. 종파와 횡파를 사용하였을 때에 얻어지는 SLAM 영상을 시뮬레이션을 통하여 비교하여 횡파를 이용하면 분해능이 향상됨을 입증하였다. SLAM을 횡파 모드에서 동작시키기 위하여 입사각을 조절할 수 있는 ??지를 제작하였고, 알루미늄 시험편에 대하여 실험한 결과로부터 종파 모드 SLAM에 의한 영상보다는 횡파 모드 SLAM의 영상의 콘트라스트가 양호함을 확인하였다.
다중모드 의료영상 융합(MMIF)은 각기 다른 특징들을 나타내는 여러 종류의 모드의 이미지를 풍부한 정보가 포함된 하나의 결과 이미지로 통합하는 것이다. 이러한 의료영상 융합은 의사가 환자의 병변을 정확하게 관찰하고 치료하는 것을 도와줄 수 있다. 이러한 목적에 영향을 받아 본 논문에서는 복층 분해기 및 미세구조 보존 모델에 기반한 새로운 방법을 제안한다. 첫째, 복층 분해기를 사용하여 소스 이미지를 미세정보 보존의 특성을 갖는 에너지 층과 구조적 층으로 분해하였다. 둘째, 구조 텐서 연산자와 max-abs를 결합하여 구조적 층을 융합한다. 에너지 층의 융합을 위해 미세구조 보존 모델을 제안하였으며 이미지 융합성능을 크게 향상시킬 수 있었다. 마지막으로, 융합규칙을 통해 형성된 두 개의 융합된 하위 이미지를 합산하여 구축하였다. 실험을 통하여 제안된 방법이 현재까지 최첨단 융합 방법들과 비교하여 우수한 성능을 나타내는 것을 검증하였다.
본 연구에서는 패턴인식과 영상압축을 목적으로 2-D 영상내에 포함되어 있는 물체들의 복잡한 형상을 형태론적 연산을 이용하여 단순한 원시형상 요소들로 분해하는 방법에 관해 연구하였다. 기존의 형태론적 형상분해 알고리즘에서 가장 큰 문제점은 형상을 표현하고 기술하는데 필요한 원시형상 요소의 수가 너무 많이 생성된다는 것이다. 본 논문에서는 이러한 문제점을 개선하기 위하여 형상의 기하학적인 특징과 가장 유사한 원시형상 요소와 4개의 스캔모드를 사용하는 형상 분해법을 새롭게 제안하였다. 제안된 알고리즘은 4개의 스 캔모드를 사용해서 원판, 정사각형, 마름모 꼴 등으로 구성되는 원시형상 요소를 추출하는 방법이다. 이와 같은 알고리즘은 기술 오차를 줄이면서 원시형상 요소의 수를 줄여 기술효율을 높일 수 있는 방법으로 최소의 중복성을 보장할 수 있으며, 알고리즘이 단순하고 계산 시간이 감소한다는 특징이 있다.
본 논문에서는 패턴인식과 영상압축을 목적으로 2-D 영상내에 포함되어 있는 물체들의 복잡한 형상을 형태론적 연산을 이용하여 단순한 원시형상 요소들로 분해하는 방법에 관해 연구하였다. 기존의 형태론적 형상분해 알고리즘에서 가장 큰 문제점은 형상을 표현하고 기술하는데 필요한 원시형상 요소의 수가 너무 많이 생성된다는 것이다. 본 연구에서는 이러한 문제점을 개선하기 위하여 형상의 기하학적인 특징과 가장 유사한 원시형상 요소와 4개의 스캔모드를 사용하는 형상분해법을 새롭게 제안하였다. 제안된 알고리즘은 4개의 스캔모드를 사용해서 원판, 정사각형, 마름모 꼴 등으로 구성되는 원시형상 요소를 추출하는 방법이다. 이와 같은 알고리즘은 기술 오차를 줄이면서 원시형상 요소의 수를 줄여 기술효율을 높일 수 있는 방법으로 최소의 중복성을 보장할 수 있으며, 알고리즘이 단순하고 계산시간이 감소한다는 특징이 있다.
소음은 현대 사회에서 쉽게 접하게 되는 환경 오염원이다. 능동소음제어(Active Noise Control)는 발생된 소음을 제거하기 위해 구현이 간단한 LMS 알고리즘을 많이 사용하고 있다. 그러나 LMS 알고리즘은 수렴 속도와 소음신호의 변화속도에 따라 발산의 위험을 가지고 있다. 본 논문에서는 이러한 LMS의 문제점을 보완하기 위해 경험 모드 분석법을 이용한 feedback FXLMS(Filtered-X Least Mean Square) 알고리즘을 제안하였다. 소음제거 시스템의 출력단에서 검출된 잔차소음을 경험 모드 분석법(Empirical Mode Decomposition)을 이용하여 IMF 신호들로 분해하고, 분해된 각 신호를 FXLMS 알고리즘을 이용하여 수렴시킨 후, 결과들을 다시 결합하여 소음 제거에 이용하였다. 각각의 IMF 신호를 FXLMS 알고리즘으로 수렴시킬 때 수렴속도에 변화를 주어 소음제거의 효율성을 높였다. 제안한 알고리즘을 Matlab을 이용하여 시뮬레이션하였고 기존의 FXLMS알고리즘보다 향상된 수렴속도 및 안정성을 가짐을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.