• Title/Summary/Keyword: 모드감쇠비

Search Result 97, Processing Time 0.027 seconds

Multi-Modal Vibration Control of Truss Structures Using Piezoelectric Actuators (압전작동기를 이용한 트러스 구조물의 다중 모드 진동제어)

  • Ju, Hyeong-Dal;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2502-2512
    • /
    • 2000
  • Truss structures are widely used in many space structures, such as large antenna systems, space stations, precision segmented telescopes because they are light in weight and amenable in assembly or deployment. But, due to the low damping capacity, they remain excited for a long time once disturbed. These structural vibrations can reduce life of the structures and cause unstable dynamic characteristics. In this research, vibration suppression experiment has carried out with a three-dimensional 15-member truss structure using two piezoelectric actuators. Piezoelectric actuators which consist of stacks of thin piezoelectric material disks are directly inserted to the truss structure collocated with the strain sensors. Each actuator is controlled digitally in decentralized manner, based on local integral and proportional feedback. The optimal positions of the actuators are determined by the modal damping ratio and the control force. Numerical simulation has carried out to determine optimal position of each actuator.

Study on the Stability of Cantilevered Pipe Conveying Fluid Subjected to Distributed Follower Force (분포종동력을 받는 외팔 송수관의 안정성에 관한 연구)

  • Kong, Chang-Duk;Park, Yo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.27-34
    • /
    • 2005
  • The paper discussed on the stability of cantilevered pipe conveying fluid subjected to distributed follower force. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The critical flow velocity as a function of the distributed follower force for the various mass ratio is determined. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration The critical mass ratios, at which the transference of the eigenvalue branches related to flutter take place, are definitely determined. Also, the effect of damping on the stability of the system is considered.

High Stability and High Efficiency Power Amplifier with Switchable Damper for Plasma Applications (플라즈마 응용을 위한 선택적 감쇠기를 사용한 고안정 고효율 전력증폭기)

  • Kim, Ji-Yeon;Lee, Dong-Heon;Chun, Sang-Hyun;Yoo, Ho-Joon;Kim, Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • In this paper, a new 1 kW power amplifier with high efficiency and high stability in a RF generator is designed and fabricated for plasma applications. The efficiency of power amplifier is improved by using class-E amplifier that consists of one push-pull MOSFET and high current drive IC instead of class-C amplifier composed of several single ended MOSFET. Switchable damper that allows selecting three different modes of amplifiers for considering efficiency and stability is added into the amplifier for plasma applications. Stable region of an early electronic discharge section is extended to VSWR of 4.5:1 compared to conventional VSWR of 3.8:1 through using switchable damper. The dimension of the amplifier is also reduced to 30 % of conventional amplifier. The 80 % efficiency of power amplifier with switchable damper is obtained the output power of 1 kW in operating frequency of 13.56 MHz. In comparison of conventional power amplifier for plasma applications, 13 % efficiency is improved.

Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.

An Efficient Rain Fade Countermeasure Technique using Adaptive Modulation in Ka-band Satellite Systems (Ka밴드 위성시스템에서 적응변조방식을 이용한 효과적인 강우 페이딩 보상기술)

  • Hwang, Seong-Hyeon;Choe, Hyeong-Jin;Kim, Hui-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.18-27
    • /
    • 2000
  • Signal attenuation of Ka-band satellite communication system due to rain fading is more severe than those of conventional frequency band system, thus an efficient rain fade countermeasure technique is absolutely required. In this paper, we design an improved adaptive modulation system, which switches the modulation mode according to the channel condition, and propose the novel synchronization algorithms. We assume that the modulation scheme is M-ary PSK and the receiver is TDMA burst mode. And the transponder model is the same with KOREASAT-3. By using the adaptive modulation scheme, we satisfy the BER and mean spectral efficiency requirements, simultaneously, which is impossible by using the fixed modulation scheme.

  • PDF

Stochastic Analysis in the Generation of Floor Response Spectra for Liner Systems with Proportional Damping (추계학적(推計學的) 해석법(解析法)에 의한 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答)스펙트럼)

  • Park, Young Suk;Seo, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 1988
  • A stochchastic analysis procedure of generating floor response spectra for proportionally damped linear systems subject to earthquake loading is presented. Theories of random vibration and mode acceleration method are used in the formulation of governing equations. The structure-oscillator interaction is not considered. It is assumed that the input motions and oscillator responses are stationary Gaussian processes with mean zero. The nonstationary characteristics of earthquake motion are incorporated in the peak factor which is based on Vanmarcke's theory. Floor response spectra for both resonance and non-resonance cases are calculated under the assumption that the peak factors for structure and oscillator are equal to that for ground response spectrum. The validity of this method is demonstrated by comparing the results obtained by proposed method with those by time history analyses. The results obtained by this method are conservative and accurate with tolerable precision. This method saves much computing time compared with time history analysis method.

  • PDF

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF