• Title/Summary/Keyword: 모듈효율

Search Result 2,227, Processing Time 0.027 seconds

Prediction of Ship Roll Motion using Machine Learning-based Surrogate Model (기계학습기반의 근사모델을 이용한 선박 횡동요 운동 예측)

  • Kim, Young-Rong;Park, Jun-Bum;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.395-405
    • /
    • 2018
  • Seakeeping safety module in Korean e-Navigation system is one of the ship remote monitoring services that is employed to ensure the safety of ships by monitoring the ship's real time performance and providing a warning in advance when the abnormal conditions are encountered in seakeeping performance. In general, seakeeping performance has been evaluated by simulating ship motion analysis under specific conditions for its design. However, due to restriction of computation time, it is not realistic to perform simulations to evaluate seakeeping performance under real-time operation conditions. This study aims to introduce a reasonable and faster method to predict a ship's roll motion which is one of the factors used to evaluate a ship's seakeeping performance by using a machine learning-based surrogate model. Through the application of various learning techniques and sampling conditions on training data, it was observed that the difference of roll motion between a given surrogate model and motion analysis was within 1%. Therefore, it can be concluded that this method can be useful to evaluate the seakeeping performance of a ship in real-time operation.

Economical Analysis of the PV-linked Residential ESS using HOMER in Korea (HOMER를 이용한 PV 연계 가정용 ESS의 경제성 분석)

  • Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • Europe and North America are paying attention to residential ESS(Energy Storage System) that can manage energy efficiently. The ESS is a system that stores and manages the electric power by charging and discharging the battery. The ESS is generally used in conjunction with photovoltaic systems. The ESS supplies the load of the power generation time and stores the remaining PV power to supply the load at the non-power generation time. However, due to the high price of residential ESS, low electric rates and increasing block rates, there is no market of residential ESS in Korea. This paper reviews the price condition and the capacity for applying PV and residential ESS to household of apartments using HOMER in Korea.

Development and usability evaluation of portable respiration training device which is applied to personal respiration cycle (개인고유의 호흡주기를 적용한 휴대형 호흡 연습장치 개발 및 유용성 평가)

  • Park, Mun-kyu;Lee, Dong-han;Cho, Yu-ra;Hwang, Seon-bung;Park, Seung-woo;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.833-835
    • /
    • 2014
  • On this study, we have developed respiratory training system to improve stability of respiration, one of the most important factors of Respiratory Gated Radiation Therapy, RGRT. Respiratory training system that we developed was applied to personal respiratory cycle so that it could provide comfortable respiratory triggering to patients. To give sufficient time for practice, we used modular portable device to practice easily and to be undetered by time and place. We have intended to improve efficiency and accuracy by providing it to patients. We are now planning to conduct experiment of 10 peoples to find out stability, degree of durability betterment and regularity of respiration when patients are using respiratory training system. There are three kinds of breathing style. First is free breathing that Individual patients can breathe freely. Second is guide breathing that patients apply to personal respiration cycle through the guiding sight and hearing program. Third is prediction breathing that patients breathe after respiratory training without guiding sight and hearing program. By using these 3 data of respiration method, we have evaluated usability of respiratory training system by quantitatively analyzing respiration period, amplitude and area's variation.

  • PDF

A study for the performance evaluation of concrete block assembly wall without using mortar (무모르타르로 건식조립된 콘크리트블록 벽체의 성능평가 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.203-210
    • /
    • 2019
  • A recent earthquake on the Korean Peninsula caused much damage to masonry buildings, and research on performance evaluation has been underway. A masonry building is generally constructed using wet construction and is affected by temperature, which reduces the efficiency of the construction. In this study, we propose a dry construction technique for assembling concrete blocks without using mortar and evaluated its performance through experimental and analytical research. To evaluate the performance, experiments were carried out for the prismatic compressive strength, direct terminal strength, and diagonal tensile strength of the dry construction wall. The adequacy of the cross section shape was also reviewed through FEM analysis. The results show that the compressive strength and diagonal tensile strength could exert a certain intensity or higher. Furthermore, the H-type module of a key block acted as a shear key for the entire concrete block, which resulted in excellent shear strength performance. In addition, the shape and thickness of the main block have a major effect on the strength performance of each block. Therefore, an optimal shape and the proposed dry construction method could be applied to replace the wet method by studying the construction or seismic performance of the proposed method.

Analysis of BIM Utilization for On-site Construction Planning in Modular Construction Project (모듈러 건축공사의 현장시공계획수립을 위한 BIM 활용성 분석)

  • Lee, Myung-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.263-272
    • /
    • 2019
  • Building Information Modeling (BIM) and modular construction are regarded as important technologies that have contributed to advancements in the construction industry. However, the utilization of BIM in current modular construction projects is limited; moreover, there are no specific guidelines pertaining the applications of BIM in modular construction projects. Therefore, this study aims to analyze the utilization of BIM for onsite construction planning in modular construction projects. First, a realistic BIM application was selected through literature review and expert interviews. Then, the construction plan of the modular projects was analyzed to classify the BIM application items into five different categories. The utilization of BIM in each category was then analyzed in terms of necessity and efficiency using a questionnaire. Finally, the BIM Utilization Index (BIM UI) was suggested based on the findings of the survey. As a results, the BIM UI for module point details, lifting plan, other installation details, site layout plan, and schedule plan was 0.811, 0.787, 0.770, 0.729, and 0.699, in the descending order of usability. In addition, through the findings of the study and interviews with experts, a case study for implementation of BIM in modular construction plan was conducted. The results of this study can be used as application guidelines for BIM in future modular construction projects.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.

Development of Portable Multi-function Sensor (Mini CPT Cone + VWC Sensor) to Improve the Efficiency of Slope Inspection (비탈면 점검 효율화를 위한 휴대형 복합센서 개발)

  • Kim, Jong-Woo;Jho, Youn-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • In order to efficiently analysis the stability of a slope, measuring the shear strength of soil is needed. The Standard Penetration Test (SPT) is not appropriate for a slope inspection due to cost and weights. One of the ways to effectively measure the N-value is the Dynamic Cone Penetration Test (DCPT). This study was performed to develop a minimized multi-function sensors that can easily estimate CPT values and Volumetric Water Content. N value with multi-fuction sensor DCPT showed -2.5 ~ +3.9% error compared with the SPT N value (reference value) in the field tests. Also, the developed multi-fuction sensor system was tested the correlation between the CPT test and the portable tester with indoor test. The test result showed 0.85 R2 value in soil, 0.83 in weathered soil, and 0.98 in mixed soil. As a result of the field test, the multi-function sensor shows the excellent field applicability of the proposed sensor system. After further research, it is expected that the portable multi-function sensor will be useful for general slope inspection.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.