• 제목/요약/키워드: 모듈화된 베이지안 네트워크

검색결과 6건 처리시간 0.024초

개인화 된 High Level Context 추출을 위한 퍼지 변수의 베이지안 추론 (Bayesian Inference with Fuzzy Variables for Customized High Level Context Extraction)

  • 유지오;김경중;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.115-117
    • /
    • 2004
  • 인간과 인간 사이에 컨텍스트의 역할이 중요한 것처럼 기계가 컨텍스트를 인식할 수 있는 능력을 갖추는 것은 중요하다. 특히 지능적인 서비스를 제공하기 위해서는 고수준 컨텍스트를 추출하는 것이 필요하고, 최근 베이지안 네트워크를 이용해 컨텍스트를 추출하려는 연구가 많이 있었다. 그러나 대부분은 단순한 컨텍스트를 추출하는 연구들이고, 상황이나 사용자에 따라 다른 특성을 보이는 경우에 대한 처리는 하지 못하고 있다. 본 논문은 퍼지 소속 함수를 통해 각 센서에서 오는 정보를 전 처리하고, 이를 베이지안 네트워크를 이용해 고수준 컨텍스트로 추출하는 방법을 제안한다. 특히 여러 개의 퍼지 노드가 있을 경우 퍼지 소속값의 곱을 사용하여 베이지안 추론에 적용하였다. 각 센서의 정보를 처리하는 퍼지 소속 함수는 사용자가 쉽게 설계할 수 있고, 컨텍스트 추출모듈과 별개로 설계가 가능하기 때문에 베이지안 네트워크의 유연하고 적응적인 특성을 유지하면서 개인화가 가능하다. 제안한 방법의 유용성을 보이기 위해 실제 세계의 문제를 모델링한 베이지안 네트워크의 예를 보이고 이를 분석한다.

  • PDF

모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템 (Group Emotion Prediction System based on Modular Bayesian Networks)

  • 최슬기;조성배
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1149-1155
    • /
    • 2017
  • 최근 통신 기술의 발달로 공간 내 환경 자극을 나타내는 다양한 센서 데이터 수집이 가능해졌다. 베이지안 네트워크는 추론 근거를 확률적으로 고려함으로써 센서 데이터의 불확실하고 불완전한 특성을 보완할 수 있다. 본 논문은 환경 자극의 심리적 영향력을 고려하여 설계된 모듈형 베이지안 네트워크 기반 대중 감성 예측 시스템을 제안한다. 또한 단일 베이지안 네트워크를 모듈화하여 공간 내 환경 자극 변동의 유연한 대응 및 효율적 추론을 수행하였다. 시스템의 성능 검증을 위해 유치원 공간에서 수집된 조도, 음량, 온도, 습도, 색 온도, 음향, 향기, 대중 감성 데이터를 기반으로 대중 감성을 예측하였다. 실험 결과, 제안하는 방법의 예측 정확도는 85%로 여타 분류 기법보다 높은 성능을 나타내었다. 정량적, 정성적 분석을 통해 대중 감성 예측을 위한 확률 기반 방법론의 가능성 및 한계를 분석하였다.

모바일 라이프 특이성 추론을 위한 베이지안 확률 모델의 자동 학습 (Automatic Learning of Bayesian Probabilistic Model for Mobile Life Landmark Reasoning)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.362-366
    • /
    • 2007
  • 다양한 기능과 센서를 탑재한 최신 모바일 디바이스는 사용자의 위치, 전화기록, SMS, 사진, 동영상 등 사용자에 관한 다양한 정보를 지속적으로 수집할 수 있기 때문에 개인의 생활을 이해하고 다양한 서비스를 제공할 수 있는 가능성을 가지고 있다. 하지만, 모바일 장치의 성능 제약 및 환경 불확실성으로 인해 아직까지 많은 연구 과제들이 남아 있다. 본 논문에서는 이러한 모바일 환경의 문제를 극복하기 위해 베이지안 네트워크를 이용한 라이프 로그 분석 모델 및 자동 학습 방법을 제안한다. 제안하는 베이지안 네트워크 모델은 모듈화 되어서 계산량은 감소되었으며, 자동 학습 방법을 통해 지속적인 업데이트가 가능하다. 이는 제안하는 방법이 복잡한 확률 모델을 자동으로 분할하는 방법과 분할된 상태에서의 유기적인 추론 방법을 포함하고 있기에 가능하다. 실험에서는 실제 모바일 장치에서 수집된 로그 데이터를 이용하여 제안하는 방법에 의한 실험 결과를 분석하고 분할을 통한 효율성 향상을 논의 한다.

  • PDF

모바일 디바이스 상에서의 특이성 탐지를 위한 베이지안 추론 모델 (Bayesian Inference Model for Landmark Detection on Mobile Device)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.127-129
    • /
    • 2006
  • 모바일 디바이스에서 얻을 수 있는 로그에는 다양한 개인정보가 풍부하게 포함되어 있으면서도 제약이 많아 활용이 어렵다. 그 동안은 모바일 장치의 용량, 파워의 제약과 정보 분석의 어려움으로 로그 정보를 무시해온 것이 일반적이었다. 본 논문에서는 모바일 디바이스의 다양한 로그 정보를 분석하여 사용자에게 의미 있는 상황(특이성)을 탐지해낼 수 있는 정보 분석 방법을 제안한다. 불확실한 상황에서의 정확성 향상을 위해 규칙/패턴 분석에 의한 특이성 추론뿐만 아니라 베이지안 네트워크를 활용한 확률적인 접근 방법을 활용한다. 이때, 복잡하지 않고 연산이 효율적으로 이루어질 수 있도록 BN을 모듈화하고 모듈화된 BN의 상호보완적인 확률 추론을 위한 BN 처리 과정을 제안한다. 그리고, 특이성 추출 모듈을 주기적으로 업데이트함으로써 성능을 향상시키기 위한 학습알고리즘을 소개한다.

  • PDF

서비스 로봇의 물체 탐색 성능 향상을 위한 온톨로지 기반 베이지안 네트워크 모델링 (Bayesian Network Modeling based on Ontology for Improving Object Detection Performance of Service Robots)

  • 송윤석;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.112-114
    • /
    • 2006
  • 최근 영상 인식 정보를 서비스 로봇 도메인에서 사용하기 위한 연구와 함께 전통적인 영상 인식 방법의 성능을 높이기 위한 연구가 진행되고 있다. 기존의 방법들은 기하학적 모델을 기반으로 예측 가능한 환경에서 상황을 인식하였기에 이를 실내 환경과 같은 동적인 환경에 적용하는 것은 정확도나 인식의 효율 면에서 한계를 갖는다. 이에 지식 기반 접근 방법을 통해 정확도를 항상 시키거나 계산 비용을 감소시킴으로써 영상 인식성능을 높이기 위한 다양한 연구가 있어 왔다. 본 논문에서는 서비스 로봇이 물체를 탐색할 때, 대상 물체가 다른 물체에 의해 가려짐으로써 발생하는 불확실한 상황을 해결하기 위한 방법을 제안한다. 제안하는 방법은 발견된 물체를 컨텍스트 정보로 사용하여 대상 물체의 존재 여부를 추론하며, 이를 위해 신뢰도를 모델링할 수 있는 확률적 모델인 베이지안 네트워크와 도메인 지식을 모델링 할 수 있는 온톨로지를 함께 사용한다. 효과적인 모델링을 위해 본 논문에서는 기본적인 물체 관계를 모듈화 하여 설계하기 위한 베이지안 네트워크 구조와 확률 값 선정 방법. 이들을 온톨로지를 기반으로 주어진 상창에 따라 결합하는 방법을 제안한다. 이는 물체 관계를 모델링할 때 발생하는 중복 설계를 감소시켜주고 유지 및 보수를 용이하게 한다. 설계된 추론 모듈은 실험 결과 5가지 장소에서 높은 정확도를 보여주었다.

  • PDF

모바일 디바이스 상에서의 특이성 탐지를 위한 베이지안 추론 모델 (A Bayesian Inference Model for Landmarks Detection on Mobile Devices)

  • 황금성;조성배;이종호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권1호
    • /
    • pp.35-45
    • /
    • 2007
  • 모바일 디바이스에서 얻을 수 있는 로그 데이타는 의미 있고 실속 있는 다양한 개인 정보를 담고 있다. 그러나 메모리 용량과 연산 능력의 제한, 분석의 어려움으로 인해 이러한 정보들은 무시되고 있는 것이 일반적이다. 모바일 환경의 이러한 어려움을 극복하기 위해 로그 데이타를 분산된 모듈에서 분석하여 사용자에게 의미 있는 정보인 특이성을 탐지하는 새로운 방법을 제안한다. 제안하는 방법은 불확실한 상황에서의 추론 정확도를 향상시키기 위해 베이지안 확률 접근 방법을 채택하고 있다. 새로운 협력적 모듈형 기술은 모바일 디바이스의 제한된 자원을 가지고 효율적으로 연산하기 위해 베이지안 네트워크를 모듈로 나눈다. 인공 데이타와 실제 데이타를 이용한 실험에서 인공 데이타의 경우 약 84%의 정확률과 약 76%의 재현률을 보였으며, 실제 데이타에서는 부분 일치를 포함하여 약 89%의 일치율을 보였다.