• Title/Summary/Keyword: 모듈라 곱셈기

Search Result 10, Processing Time 0.02 seconds

Design of Montgomery Modular Multiplier based on Systolic Array (시스토릭 어레이를 이용한 Montgomery 모듈라 곱셈기 설계)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.135-146
    • /
    • 1999
  • Most public key cryptosystems are constructed based on a modular exponentiation, which is further decomposed into a series of modular multiplications. We design a new systolic array multiplier to speed up modular multiplication using Montgomery algorithm. This multiplier with simple circuit for each processing element will save about 14% logic gates of hardware and 20% execution time compared with previous one.

Circuit Design of Modular Multiplier for Fast Exponentiation (고속 멱승을 위한 모듈라 곱셈기 회로 설계)

  • 하재철;오중효;유기영;문상재
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1997.11a
    • /
    • pp.221-231
    • /
    • 1997
  • 본 논문에서는 고속 멱승을 위한 모듈라 곱셈기를 시스토릭 어레이로 설계한다. Montgomery 알고리듬 및 시스토릭 어레이 구조를 분석하고 공통 피승수 곱셈 개념을 사용한 변형된 Montgomery 알고리듬에 대해 시스토릭 어레이 곱셈기를 설계한다. 제안 곱셈기는 각 처리기 내부 연산을 병렬화 할 수 있고 연산 자체도 간단화 할 수 있어 시스토릭 어레이 하드웨어 구현에 유리하며 기존의 곱셈기를 사용하는 것보다 멱승 전체의 계산을 약 0.4배내지 0.6배로 감소시킬 수 있다.

  • PDF

A Design of Modular Multiplier Based on Improved Multi-Precision Carry Save Adder (개선된 다정도 CSA에 기반한 모듈라 곱셈기 설계)

  • Kim, Dae-Young;Lee, Jun-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.223-230
    • /
    • 2006
  • The method of implementing a modular multiplier for Montgomery multiplication by using an adder depends on a selected adder. When using a CPA, there is a carry propagation problem. When using a CSA, it needs an additional calculation for a final result. The Multiplier using a Multi-precision CSA can solve both problems simultaneously by combining a CSA and a CPA. This paper presents an improved MP-CSA which reduces hardware resources and operation time by changing a MP-CSA's carry chain structure. Consequently, the proposed multiplier is more suitable for the module of long bit multiplication and exponentiation using a modular multiplier repeatedly.

Study on Implementation of a High-Speed Montgomery Modular Exponentiator (고속의 몽고메리 모듈라 멱승기의 구현에 관한 연구)

  • Kim, In-Seop;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.901-904
    • /
    • 2002
  • 정보의 암호화와 인증, 디지털 서명등에 효율적인 공개키 암호 시스템의 주 연산은 모듈라 멱승 연산이며 이는 모듈라 곱셈의 연속적인 반복 수행으로 표현될 수 있다. 본 논문에서는 Montgomery 모듈라 곱셈 알고리즘을 사용하여 모듈라 곱셈을 효율적으로 수행하기 위한 모듈라 멱승 연산기를 구현하였으며 Montgomery 모듈라 곱셈시 발생하는 케리 진파 문제를 해결하기 위하여 CPA을 대신하는 CSA를 사용함으로써 멱승 연산시 발생하는 지연시간을 최소화시키는 결과가 얻어짐을 보였다. 본 논문에서는 Montgomery 모듈라 멱승 연산기 구현을 위하여 VHDL 구조적 모델링을 통하여 Synopsys사의 VSS와 Design analyzer를 이용한 논리 합성을 하였고 Mentor Graphics사 Model sim 및 Xilinx사 Design manager의 FPGA 시뮬레이션을 수행하여 성능을 검증 하였다.

  • PDF

Efficient Architectures for Modular Exponentiation Using Montgomery Multiplier (Montgomery 곱셈기를 이용한 효율적인 모듈라 멱승기 구조)

  • 하재철;문상재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.63-74
    • /
    • 2001
  • Modular exponentiation is an essential operation required for implementations of most public key cryptosystems. This paper presents two architectures for modular exponentiation using the Montgomery modular multiplication algorithm combined with two binary exponentiation methods, L-R(Left to Left) algorithms. The proposed architectures make use of MUXes for efficient pre-computation and post-computation in Montgomery\`s algorithm. For an n-bit modulus, if mulitplication with m carry processing clocks can be done (n+m) clocks, the L-R type design requires (1.5n+5)(n+m) clocks on average for an exponentiation. The R-L type design takes (n+4)(n+m) clocks in the worst case.

Implementation of 2,048-bit RSA Based on RNS(Residue Number Systems) (RNS(Residue Number Systems) 기반의 2,048 비트 RSA 설계)

  • 권택원;최준림
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.57-66
    • /
    • 2004
  • This paper proposes the design of a 2,048-bit RSA based on RNS(residue number systems) Montgomery modular multiplier As the systems that RNS processes a fast parallel modular multiplication for a large word partitioned into small words, we introduce Montgomery reduction method(MRM)[1]based on Wallace tree modular multiplier and 33 RNS bases with 64-bit size for RNS Montgomery modular multiplication in this paper. Also, for fast RNS modular multiplication, a modified method based on Chinese remainder theorem(CRT)[2] is presented. We have verified 2,048-bit RSA based on RNS using Samsung 0.35${\mu}{\textrm}{m}$ technology and the 2,048-bit RSA is performed in 2.54㎳ at 100MHz.

A Scalable Word-based RSA Cryptoprocessor with PCI Interface Using Pseudo Carry Look-ahead Adder (가상 캐리 예측 덧셈기와 PCI 인터페이스를 갖는 분할형 워드 기반 RSA 암호 칩의 설계)

  • Gwon, Taek-Won;Choe, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.34-41
    • /
    • 2002
  • This paper describes a scalable implementation method of a word-based RSA cryptoprocessor using pseudo carry look-ahead adder The basic organization of the modular multiplier consists of two layers of carry-save adders (CSA) and a reduced carry generation and Propagation scheme called the pseudo carry look-ahead adder for the high-speed final addition. The proposed modular multiplier does not need complicated shift and alignment blocks to generate the next word at each clock cycle. Therefore, the proposed architecture reduces the hardware resources and speeds up the modular computation. We implemented a single-chip 1024-bit RSA cryptoprocessor based on the word-based modular multiplier with 256 datapaths in 0.5${\mu}{\textrm}{m}$ SOG technology after verifying the proposed architectures using FPGA with PCI bus.

Implementation of RSA Exponentiator Based on Radix-$2^k$ Modular Multiplication Algorithm (Radix-$2^k$ 모듈라 곱셈 알고리즘 기반의 RSA 지수승 연산기 설계)

  • 권택원;최준림
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • In this paper, an implementation method of RSA exponentiator based on Radix-$2^k$ modular multiplication algorithm is presented and verified. We use Booth receding algorithm to implement Radix-$2^k$ modular multiplication and implement radix-16 modular multiplier using 2K-byte memory and CSA(carry-save adder) array - with two full adder and three half adder delays. For high speed final addition we use a reduced carry generation and propagation scheme called pseudo carry look-ahead adder. Furthermore, the optimum value of the radix is presented through the trade-off between the operating frequency and the throughput for given Silicon technology. We have verified 1,024-bit RSA processor using Altera FPGA EP2K1500E device and Samsung 0.3$\mu\textrm{m}$ technology. In case of the radix-16 modular multiplication algorithm, (n+4+1)/4 clock cycles are needed and the 1,024-bit modular exponentiation is performed in 5.38ms at 50MHz.

High Speed Modular Multiplication Algorithm for RSA Cryptosystem (RSA 암호 시스템을 위한 고속 모듈라 곱셈 알고리즘)

  • 조군식;조준동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3C
    • /
    • pp.256-262
    • /
    • 2002
  • This paper presents a novel radix-4 modular multiplication algorithm based on the sign estimation technique (3). The sign estimation technique detects the sign of a number represented in the form of a carry-sum pair. It can be implemented with 5-bit carry look-ahead adder. The hardware speed of the cryptosystem is dependent on the performance modular multiplication of large numbers. Our algorithm requires only (n/2+3) clock cycle for n bit modulus in performing modular multiplication. Our algorithm out-performs existing algorithm in terms of required clock cycles by a half, It is efficient for modular exponentiation with large modulus used in RSA cryptosystem. Also, we use high-speed adder (7) instead of CPA (Carry Propagation Adder) for modular multiplication hardware performance in fecal stage of CSA (Carry Save Adder) output. We apply RL (Right-and-Left) binary method for modular exponentiation because the number of clock cycles required to complete the modular exponentiation takes n cycles. Thus, One 1024-bit RSA operation can be done after n(n/2+3) clock cycles.

$AB^2$ Semi-systolic Multiplier ($AB^2$ 세미시스톨릭 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.892-894
    • /
    • 2002
  • 본 논문은 유한 체 GF(/2 sup m/)상에서 A$B^2$연산을 위해 AOP(All One Polynomial)에 기반한 새로운 MSB(Most Significant bit) 유선 알고리즘을 제시하고, 제시한 알고리즘에 기반하여 병렬 입출력 세미시스톨릭 구조를 제안한다. 제안된 구조는 표준기저(standard basis)에 기반하고 모듈라(modoular) 연산을 위해 다항식의 계수가 모두 1인 m차의 기약다항식 AOP를 사용한다. 제안된 구조에서 AND와 XOR게이트의 딜레이(deray)를 각각 /D sub AND$_2$/와/D sub XOR$_2$/라 하면 각 셀 당 임계경로는 /D sub AND$_2$+D sub XOR/이고 지연시간은 m+1이다. 제안된 구조는 기존의 구조보다 임계경로와 지연시간 면에서 보다 효율적이다. 또한 구조 자체가 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI 구현에 효율적이다. 더욱이 제안된 구조는 유한 체상에서 지수 연산을 필요로 하는 Diffie-Hellman 키 교환 방식, 디지털 서명 알고리즘 및 EIGamal 암호화 방식과 같은 알고리즘을 위한 기본 구조로 사용할 수 있다. 이러한 알고리즘을 응용해서 타원 곡선(elliptic curve)에 기초한 암호화 시스템(Cryptosystem)의 구현에 사용될 수 있다.

  • PDF