본 논문에서 제안하는 카메라 움직임 파라미터를 추출하는 새로운 방법은 먼저 광류(optical flow) 관계 수식을 이용하여, 카메라의 다양한 움직임에 의해 생성되는 광류 모델들을 생성한다. 입력 비디오 데이터의 인접 영상으로부터 산출된 광류를 생성된 광류 모델들을 이용하여 선형 분해한다. 분해 과정을 통해 각 모델에 대한 가중치를 산출할 수 있으며, 산출된 가중치는 각 모델의 생성에 사용된 파라미터에 적용하여 이들의 선형 조합을 통해 입력에 대한 카메라 움직임 파라미터를 추출할 수 있다. 제안된 방법의 성능을 평가하기 위하여 수치 데이터와 비디오 데이터에 대하여 실험한 결과, 제안된 카메라 움직임 파라미터 추출 방법이 적은 계산 비용으로 정확하게 카메라 움직임 파라미터를 추출할 수 있음을 확인할 수 있었다. 또한 입력 데이터에 노이즈가 포함된 경우에도 파라미터 추출 성능이 우수함을 알 수 있었다.
본 논문에서는 변조 함수법을 이용하여 비선형 연속시스템의 퍼지모델 파라미터 인식을 위한 새로운 알고리즘을 제시하였다. 동력학 미분방정식은 미분항을 가지고 있기 때문에 입출력 데이터를 이용하여 퍼지모델 파라미터를 인식하는 경우 외란의 영향을 무시할 수 없으므로 퍼지모델 파라미터 인식이 어렵다. 그러나 변조 함수법을 이용하면 미분항을 소거할 수 있어 미분항이 없는 연립방정식으로부터 쉽게 퍼지모델 파라미터 인식이 가능하다 몇 개의 시뮬레이션을 통해 제안한 변조 함수법을 이용한 퍼지모델 파라미터 인식의 정확성과 유효성을 확인할 수 있었다.
최근 CNN 이 다양한 산업에 확산되고 있으며, IoT 기기 및 엣지 컴퓨팅에 적합한 경량 모델에 대한 연구가 급증하고 있다. 본 논문에서는 CNN 모델의 파라미터 비트 연산을 위한 자동화 프레임워크를 제안하고, 파라미터 비트와 모델 정확도 사이의 관계를 실험 및 연구한다. 제안된 프레임워크는 하위 n- bit 를 0 으로 설정하여 정보 손실 발생시킴으로써 ImageNet 데이터셋으로 사전 학습된 CNN 모델의 파라미터와 정확도의 강인성을 비트 단위로 체계적으로 실험할 수 있다. 우리는 비트 연산을 수행한 파라미터로 InceptionV3, InceptionResnetV2, ResNet50, Xception, DenseNet121, MobileNetV1, MobileNetV2 모델의 정확도를 평가한다. 실험 결과는 성능이 낮은 모델일수록 파라미터와 정확도 간의 강인성이 높아 성능이 좋은 모델보다 정확도를 유지하는 비트 수가 적다는 것을 보여준다.
본 논문에서는 뉴로-퍼지 모델의 전제부 소속함수의 새로운 학습방법을 통한 모델링 기법을 제안한다. 모델의 크기와 학습시간을 줄이는 기법으로 클러스터링 기법을 이용한 모델의 초기 파라미터 결정 방법이 있다. 이는 클러스터링 후 이들 파라미터를 다시 모델에 적용하여 모델을 학습하는 순차적 방법으로써 모델의 학습이 끝난 후의 전제부 파라미터가 클러스터링 파라미터와 연관성을 가지지 못하는 경우가 발생하였다. 또한 오차미분 기반 학습에서는 전제부 초기치가 국부적 최적해에서 벋어나지 못하는 문제점을 가지고 있다. 본 논문에서는 자율적으로 클러스터의 수를 추정하며 이들 파라미터를 최적화하며 이를 이용하여 뉴로-퍼지 모델의 학습을 실시하는 학습기법을 제안하였다. 제안된 방법에서는 기존의 오차미분 기반 학습을 클러스터링 기반 학습으로 확장하였으며 이를 이용한 모델의 성능을 기존의 연구결과와 비교하여 우수성을 보인다.
음성 문자 공용 인식 시스템은 PDA (Personal Digital Assistants)와 같은 휴대용 모빌 환경에서 음성인식과 문자인식을 적용하기에 적합하도록 개발되었다. 공용 인식 시스템은 특징 파라미터 추출에 있어서는 음성과 문자부분이 독립적으로 수행되나, 인식 과정은 단일 엔진으로 수행된다. CHMM (Continuous Hidden Markov Model)을 이용하는 인식엔진은 고정 파라미터 모델 구조 대신에 동일한 인식률을 유지하면서 모델의 파라미터의 수를 효과적으로 줄일 수 있는 가변 파라미터 모델 구조를 사용하는 것이 유리하다. 본 논문에서는 문맥 독립 가변 파라미터 모델을 생성하기 위해 SSMS (Successive State and Mixture Splitting) 방법을 제안한다. SSMS 알고리즘은 시간 방향 분할과 혼합수 방향분할을 통해 적절한 상태수와 각 상태당 적절한 혼합수를 가지는 모델을 생성한다. 음성 인식 실험 결과 동일한 인식성능을 나타내는 경우 SSMS 기반 가변 파라미터 모델이 고정 파라미터 모델에 비해 GOPDD (Gaussian Output Probability Density Distribution)의 수가 40% 감소함을 확인할 수 있었다.
본 논문에서는 노이즈 모델에 기반한 훼손된 얼굴 영상의 인증하는 방법을 제안한다. 제안된 방법은 먼저 학습 단계에서 노이즈 파라미터의 변화에 의해 훼손된 영상을 생성한다. 그 훼손된 영상과 노이즈 파라미터는 PCA에 의해 훼손된 영상과 노이즈 파라미터들의 선형 조합으로 표현된다. 테스트 단계에서는 훼손된 영상으로 LSM(Least-square minimization)방법을 적용하여 훼손된 영상의 노이즌 파라미터를 추정한다. 그리고 추정된 노이즈 파라미터를 가지고 원본 영상으로부터 합성된 영상을 생성하고, 그것을 테스트 영상과 인증한다. 실험 결과는 제안된 방법이 노이즈 파라미터를 정확하게 추정하여 얼굴 인증의 성능 개선 가능성을 보여준다.
본 논문에서는 구조해석을 위한 PSC 박스 거더교의 객체 정보 모델에 관한 연구를 수행하였다. 대상 교량의 객체 정보 모델을 생성하기 위해서는 수많은 형상 및 치수에 관한 파라미터를 필요로 하게 된다. 따라서 본 연구에서는 이 교량의 설계 목적에 맞는 파라미터를 분류하였고, 파라미터들 사이의 계층구조(Structure)와 상관관계를 정의하였다. 또한 본 연구에서 적용된 인터페이스 프로그램은 3차원 객체 모델에서 출력된 파라미터를 변환하여 구조해석을 위한 입력값으로 변환시켜, 해석 결과값을 구조계산서에 출력시킴으로써 엔지니어가 설계 타당성과 모델변경 요구를 용이하게 할 수 있게 하였다. 그리고 대상 모델에 대한 설계변경은 구조물의 특징에 맞는 상관파라메트릭 방법을 적용하여 신속하게 할 수 있도록 유도하였다. 이 연구를 통해 건설구조물의 설계를 3D 모델로 하기위한 가능성을 확인하였다.
본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.
본 논문은 제어 공정의 파라미터의 동정과 축소모델을 이용하여 선형 및 비선형 특성을 고려한 PID 제어기 설계를 제안하였다. 제어기 파라미터값은 2차의 지연시간을 갖는 축소 모델의 파라미터값에 의해 결정되며, 외란 및 제어 공정의 파라미터 값이 변할 때에는 실제 모델의 동정을 통해 구하며, 또한 실제 공정과 축소 모델의 관계식을 통해 제어 파라미터 값을 실시간으로 보정하여 제어한다. 시뮬레이션을 통하여 실시간 모델 동정 및 제어 파라미터 값이 보정됨을 확인 할 수 있다.
본 논문에서는 동영상의 화질을 일정하게 하기 위한 실시간 비트율 제어 기법을 제안한다. 일정 화질을 만족하기 위한 기존의 비트율 제어 알고리즘은 프레임의 부호화 복잡도를 잔여 신호인 MAD(mean absolute of difference)로 추정하여 비트 할당을 수행하였다. 그러나 MAD는 영상의 특성이나 부호화 파라미터에 따라 동일한 MAD라도 다른 비트를 생성하므로 영상의 부호화 복잡도를 적절히 나타내기 어렵다. 본 논문에서는 이 문제를 해결하기 위해 비트와 MAD사이의 기울기인 모델 파라미터를 프레임의 복잡도의 측도로 보고 이전 프레임과 현재 프레임의 모델 파라미터의 비율로 비트 할당을 수행한다. 또한 기존의 비트-복잡도 모델에서 구한 모델 파라미터는 양자화 파라미터가 변함에 따라 그 값이 크게 변하여 영상의 내재적 복잡도를 나타내기 어렵다. 따라서 본 논문에서는 비트-복잡도 모델에 양자화 파라미터를 추가하여 양자화 파라미터가 변하더라도 영상의 복잡도의 측도인 모델 파라미터는 변하지 않게 하였다. 광범위한 실험결과는 제안한 알고리즘이 기존의 알고리즘에 비해 비슷한 평균 화질을 유지하면서 화질의 변동을 큰 폭으로 줄였음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.