Journal of the Korea Institute of Building Construction
/
v.16
no.5
/
pp.437-445
/
2016
Since typhoon is a critical meteorological disaster, some advanced countries have developed typhoon damage prediction models. However, although South Korea is vulnerable to typhoons, there is still shortage of study in typhoon damage prediction model reflecting the vulnerability of domestic building and features of disaster. Moreover, many studies have been only focused on the characteristics and typhoon and regional characteristics without various influencing factors. Therefore, the objective of this study is to analyze typhoon damage by path and develop to prediction model for building damage ratio by using multiple regression analysis. This study classifies the building damages by typhoon paths to identify influencing factors then the correlation analysis is conducted between building damage ratio and their factors. In addition, a multiple regression analysis is applied to develop a typhoon damage prediction model. Four categories; typhoon information, geography, construction environment, and socio-economy, are used as the independent variables. The results of this study will be used as fundamental material for the typhoon damage prediction model development of South Korea.
정확한 태풍진로 예측은 동아시아 최대의 자연재해인 태풍의 피해를 최소화하는데 필수적이다. 기상역학에 기초를 둔 수치모델과 회귀분석등의 통계적 접근법이 사용되어왔다. 본 논문에서는 비선형 신경망모델인 다층퍼셉트론을 제안한다. 즉, 태풍진로예측을 이동경로, 속도, 기압 등의 변수로 이루어진 시계열의 예측으로 본다. 1945년부터 1989년까지 한반도에 접근한 태풍 데이터를 이용하여 제안된 신경망을 학습한 후, 94, 95년도에 접근한 태풍의 진로를 예측하였다. 신경망의 예측성능은 수치모델의 성능보다 조금 우수하거나 비슷하였다. 신경망의 성능은 충분히 더 향상될 수 있는 여지가 있다. 또한, 고가의 슈퍼컴퓨터로 여러 시간 계산을 해야하는 수치모델에 비하여 PC상에서 수초만에 계산을 할 수 있는 신경망 모델은 비용 면에서도 장점이 있다.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.35
no.4
/
pp.67-74
/
2023
High waves and storm surges due to tropical cyclones cause great damage in coastal areas; therefore, accurately predicting storm surges and high waves before a typhoon strike is crucial. Meteorological forcing is an important factor for predicting these catastrophic events. This study presents an improved methodology for determining accurate meteorological forcing. Typhoon Chaba, which caused serious damage to the south coast of South Korea in 2016, was selected as a case study. In this study, symmetric and asymmetric parametric vortex models based on the typhoon track forecasted by the Model for Prediction Across Scales (MPAS) were used to create meteorological forcing and were compared with those models based on the best track. The meteorological fields were also created by blending the meteorological field from the symmetric / asymmetric parametric vortex models based on the MPAS-forecasted typhoon track and the meteorological field generated by the forecasting model (MPAS). This meteorological forcing data was then used given to two-way coupled tide-surge-wave models: Advanced CIRCulation (ADCIRC) and Simulating Waves Nearshore (SWAN). The modeled storm surges and waves correlated well with the observations and were comparable to those predicted using the best track. Based on our analysis, we propose using the parametric model with the MPAS-forecasted track, the meteorological field from the same forecasting model, and blending them to improve storm surge and wave prediction.
본 논문에서는 태풍의 진로와 세기를 ES_BLRNN을 이용해 예측하였다. 기존의 방법인 수치모델이나. CLIPER모델을 사용함에 있어서, 통계적 방법인 CLIPER모델은 예측성능면에서 수치모델보다 그 성능이 떨어지고, 반면에 수치모델의 성능은 CLIPER 모델에 비해 우수하나 슈퍼컴퓨터(Cray-2S, FUSITSU)를 이용하여야만 예보가 가능한 제약점을 가지고 있다. 또한 수치모델을 슈퍼컴퓨터로 계산할 경우 약 30분 정도가 소요되는 점을 감안할 때, ES_BLRNN은 이들의 단점을 보안할 수 있는 하나의 방편이라 생각된다. 게다가 ES_BLRNN의 경우 개인용 컴퓨터로도 충분히 사용 가능할 만큼 비용이 저렴하고, 681개의 태풍을 학습할 때 결리는 시간은 약 5분 정도이며, 146개의 태풍을 예측하는데 걸리는 시간은 약 3초 정도(Pentium MMX 200 Processor, RAM 64m, OS: RedHat LINUX 5.2. language ; ANSI-C)로써, 슈퍼컴퓨터나 CLIPER모델에 비해 훨씬 빠르게 결과를 볼 수 있다.
A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.21
no.1
/
pp.79-90
/
2009
This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.
The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.
Kim, Da-In;Kim, Kang-Min;Lee, Joong-Woo;Kwon, So-Hyun
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2018.11a
/
pp.34-35
/
2018
낙동강 하류역은 최근의 퇴적우세 지형변화와 더불어, 기후변화에 따른 태풍강도 강화 등으로 인한 해일고 증가가 우려된다. 따라서, 과거 태풍자료를 수집 분석한 후 연구지역에 가장 큰 영향을 미친 태풍을 모델 태풍으로 선정하여 낙동강 하류역에 위치한 주요지점별 폭풍해일고 변화를 파악하였다. 실험결과, 최대 폭풍해일고는 태풍 매미 내습시에 나타났으며, 하단 매립지 전면에서 1.1~1.5m, 명지주거단지 전면에서 1.2~1.3m, 녹산국가산업단지 전면에서 1.3~1.5m로 하단 매립지 전면이 가장 크게 나타났다. 향후, 과거 지형변화를 고려한 폭풍해일고 검토를 통하여 최근의 급격한 지형변화로 인한 영향을 파악한 대비를 해야 할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.