• 제목/요약/키워드: 모델 태풍

검색결과 240건 처리시간 0.037초

태풍타입별 피해 분석 및 다중회귀분석을 활용한 태풍피해예측모델 개발 연구 (Typhoon Path and Prediction Model Development for Building Damage Ratio Using Multiple Regression Analysis)

  • 양성필;손기영;이경훈;김지명
    • 한국건축시공학회지
    • /
    • 제16권5호
    • /
    • pp.437-445
    • /
    • 2016
  • 태풍은 인류에 큰 피해를 주는 재난재해로 몇몇 선진국에서는 태풍으로 인한 건축물 피해액 사전예측 모델에 관한 연구가 진행되고 있다. 국내에서도 해외 연구를 토대로 국내에 적용시키는 연구가 진행되었지만, 태풍의 특성이나 크기 등이 차이가 나므로 국내에 적합한 모델이 필요한 실정이다. 또한, 국내의 연구는 태풍의 특성, 지역적 특성만을 고려하여 진행 하였으나, 태풍은 복합재해로서 태풍의 특성, 지리적 특성만이 아닌 태풍의 진로, 건설환경, 등 다양한 요인을 고려하여야한다. 이에 본 연구에서는 국내에 영향을 미친 태풍을 7가지 타입으로 분류하여 건물피해액 영향인자를 도출하고, 회귀분석을 실시하여 태풍 타입별 건물피해율 예측모델을 개발 목적으로 한다. 이는 선진국의 자연재해 예측모델들과 같이 국내의 상황에 맞는 태풍에 따른 피해를 예측하기 위한 모델 개발을 위한 자료로 활용 될 것이다.

신경망을 이용한 태풍진로 예측 (Typhoon Track Prediction using Neural Networks)

  • 박성진;조성준
    • 지능정보연구
    • /
    • 제4권1호
    • /
    • pp.79-87
    • /
    • 1998
  • 정확한 태풍진로 예측은 동아시아 최대의 자연재해인 태풍의 피해를 최소화하는데 필수적이다. 기상역학에 기초를 둔 수치모델과 회귀분석등의 통계적 접근법이 사용되어왔다. 본 논문에서는 비선형 신경망모델인 다층퍼셉트론을 제안한다. 즉, 태풍진로예측을 이동경로, 속도, 기압 등의 변수로 이루어진 시계열의 예측으로 본다. 1945년부터 1989년까지 한반도에 접근한 태풍 데이터를 이용하여 제안된 신경망을 학습한 후, 94, 95년도에 접근한 태풍의 진로를 예측하였다. 신경망의 예측성능은 수치모델의 성능보다 조금 우수하거나 비슷하였다. 신경망의 성능은 충분히 더 향상될 수 있는 여지가 있다. 또한, 고가의 슈퍼컴퓨터로 여러 시간 계산을 해야하는 수치모델에 비하여 PC상에서 수초만에 계산을 할 수 있는 신경망 모델은 비용 면에서도 장점이 있다.

  • PDF

예측 모델 및 파라미터 모델을 이용한 파랑 및 폭풍해일 예측 개선방안 연구: 태풍 차바 사례 (A Study on the Improvement of Wave and Storm Surge Predictions Using a Forecasting Model and Parametric Model: a Case Study on Typhoon Chaba)

  • 육진희;조민수
    • 한국해안·해양공학회논문집
    • /
    • 제35권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 열대성 저기압으로 인한 높은 파도와 폭풍해일은 해안지역에 큰 피해를 준다. 따라서 태풍이 내습하기 전에 정확하게 예측해야 하는데, 기상 강제력은 예측에 중요한 요소이다. 본 연구는 정확한 폭풍해일 및 파랑예측에 요구되는 기상 강제력을 위한 개선방안을 제시한다. 2016년 남해안을 강타한 태풍 차바를 사례연구로 하여, 기상예측모델(MPAS)로 태풍 트랙 및 기상 강제력, 즉, 기상장을 예측했다. 예측된 MPAS 태풍 트랙 정보를 기반으로 한 태풍의 대칭형 및 비대칭형 파라미터 와류 모델을 이용하여 기상 강제력을 생성하는 한편, 베스트 트랙 기반 동일 한 파라미터 모델을 이용하여 기상 강제력을 생성하여, 둘을 비교했다. 또한, MPAS 예측 태풍 트랙 정보 기반 대칭형/비대칭형 와류 파라미터 모델에서 생성된 기상장은 MPAS에서 예측한 기상장과 블렌딩하여 예측기상장을 만들었다. 이렇게 제작된 MPAS 기반 forecast 기상장 4종 및 베스트 트랙 기반 hindcast 기상장 2종을 ADCIRC+SWAN ADCIRC+SWAN에 입력하여 남해안의 파랑 및 폭풍해일을 예측/재현하고 관측치와 비교·검증했다. MPAS 기반 forecast 기상장을 이용하여 예측된 폭풍해일과 파랑은 관측치와 거의 일치했으며, 베스트 트랙을 사용하여 재현한 결과와도 견줄 만했다. 유의파고는, 6종의 기상장을 이용한 실험에서 MPAS 예측 태풍 트랙 기반 대칭형 와류 파라미터 모델로 생성된 기상장과 MPAS 예측 기상장을 블렌딩한 실험이 예측 정확도가 높았으나, 비대칭형 와류 파라미터 모델과 블렌딩을 사용한 경우보다 약간 높은 정도였다. 폭풍해일은, MPAS 예측 태풍 트랙을 이용한 비대칭형 와류 파라미터 모델에서 생성된 기상장을 이용한 실험이 예측 정확도가 높았다. 폭풍해일과 파랑을 정확하게 예측하기 위해서는, 정확한 태풍 트랙 정보와 이 정보가 반영된 비대칭형 와류가 고려된 기상장, 이 태풍 트랙을 생산한 기상장이 필요한 것을 볼 수 있다.

진화신경망을 이용한 태풍 예측 시스템에 대한 연구 (A Study on the Typoon Prediction System Using the Evolving Neural network)

  • 신대진;강환일;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.446-449
    • /
    • 2001
  • 본 논문에서는 태풍의 진로와 세기를 ES_BLRNN을 이용해 예측하였다. 기존의 방법인 수치모델이나. CLIPER모델을 사용함에 있어서, 통계적 방법인 CLIPER모델은 예측성능면에서 수치모델보다 그 성능이 떨어지고, 반면에 수치모델의 성능은 CLIPER 모델에 비해 우수하나 슈퍼컴퓨터(Cray-2S, FUSITSU)를 이용하여야만 예보가 가능한 제약점을 가지고 있다. 또한 수치모델을 슈퍼컴퓨터로 계산할 경우 약 30분 정도가 소요되는 점을 감안할 때, ES_BLRNN은 이들의 단점을 보안할 수 있는 하나의 방편이라 생각된다. 게다가 ES_BLRNN의 경우 개인용 컴퓨터로도 충분히 사용 가능할 만큼 비용이 저렴하고, 681개의 태풍을 학습할 때 결리는 시간은 약 5분 정도이며, 146개의 태풍을 예측하는데 걸리는 시간은 약 3초 정도(Pentium MMX 200 Processor, RAM 64m, OS: RedHat LINUX 5.2. language ; ANSI-C)로써, 슈퍼컴퓨터나 CLIPER모델에 비해 훨씬 빠르게 결과를 볼 수 있다.

  • PDF

북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용 (Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula)

  • 최우석;허창회;강기룡;윤원태
    • 대기
    • /
    • 제24권4호
    • /
    • pp.565-571
    • /
    • 2014
  • 본 연구에서는 국가태풍센터에서 운영하는 북서태평양 태풍 진로 계절예측모델의 6월부터 10월까지의 고정된 예측시점을 현업 예보자가 목적에 따라 3개월 단위로 그 예측기간을 조정할 수 있도록 개선하였다. 여름철과 가을철 태풍 전망을 발표하는 기상청 장기예보 일정에 부합해 예측결과를 산출하기 위해 계절별로 나누어 북서태평양의 대표적 태풍 진로 유형을 새로 분류하고 각 유형별 대규모 순환장과의 상관성을 분석해서 예측모델을 개발하였다. 이 모델들의 성능을 평가하고 현업에서의 활용 가능성을 확인하기 위해 교차타당화 방법을 이용해 1982년부터 2010년까지 과거기간 동안의 예측성능을 검증하였다. 태풍 진로 밀도의 예측에 있어 관측과 모델 값의 상관계수는 여름철에 0.70, 가을철에 0.55 정도를 보였으며, 이는 예측치가 관측에서 나타난 변동성의 99% 유의수준에서 모의되는 것으로 나타났다. 두 계절 모두 기후적인 관점에서 우수한 예측성능을 보였고, 또한 기존에 개발되었던 6월부터 10월까지 기간을 대상으로 하는 모델의 성능과 비슷한 수준인 것으로 나타났다. 이러한 예측 대상기간의 수정은 사용자가 본 모델의 초기 입력자료로 사용되는 네임리스트 입력 파라미터를 조정해 쉽게 조절할 수 있다. 또한 본 모델 예측 결과에 한반도 비상구역의 결과를 집중해서 산출하는 후처리 모듈을 추가하여 현업 예보에서 신속하게 모델을 구동하고 정확한 한반도 태풍활동 예측결과를 산출할 수 있도록 하였다. 비록 가을철 한반도 비상구역 태풍활동의 피크 해 모의에 한계성이 일부 나타났으나 향후 새로운 예측인자 도입 및 최적화, 다른 회귀분석 방법 시험 등을 통해 극복할 수 있을 것이다. 이 연구를 통해 개발된 3개월 단위 예측 모듈, 유저 친화적 인터페이스, 그리고 후처리 스크립트 추가를 통한 한반도 지역 예측기능들은 기상청 국가태풍센터의 태풍 장기 예보 업무에 큰 도움이 될 것으로 기대된다.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-90
    • /
    • 2009
  • 본 논문에서는 심해부터 천해에 까지 적용가능한 동적결합형 태풍 해일-조석-파랑 수치모델을 태풍 매미에 적용하여 모델의 안정성과 정확성을 검증하였다. 동적결합형 모델은 해수유동 모델인 POM을 수정한 모듈과 심해 풍파모델인 WAM을 심해부터 천해까지 적용가능하도록 수정한 모듈로 구성되어 있다. 수정 POM 모듈에서 조위, 조류 와 해일을 계산하며, 수정 WAM 모듈에서 풍파를 계산하여 상호 계산된 결과를 주고 받도록 결합된 동적결합형 모델이다. 수정 WAM 모듈에서는 잉여응력과 바람에 의한 마찰응력, 해수면 조도계수 등의 계산결과가 POM으로 제공되며 수정 POM 모듈에서는 유속, 조위면 등의 정보가 WAM으로 제공된다. 개발된 수치모델을 태풍 매미에 적용하여 계산된 결과를 관측된 파랑 및 조위자료와 비교하여 정확성을 검증하였다.

정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측 (Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output)

  • 이주현;유철희;임정호;신예지;조동진
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1037-1051
    • /
    • 2020
  • 최근 기후변화로 인해 강도가 높은 태풍의 빈도가 높아짐에 따라 태풍 예측의 중요성이 강조되고 있는 데, 태풍경로예측에 비해 태풍강도예측에 대한 연구는 미비한 상황이다. 이에 본 연구에서는 딥러닝 모델인 Multi-task learning (MTL) 기법을 활용하여 정지궤도기상위성을 활용한 관측자료와 수치예보모델을 융합한 실시간 추정 및 6시간, 12시간 후의 태풍강도예측 모델을 제안하고자 한다. 본 연구에서는 2011년에서 2016년까지 북서태평양에서 발생한 총 142개의 태풍을 대상으로 강도 예측 연구를 시행하였다. 한국 최초의 기상위성인 Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI)를 활용하여 태풍의 관측영상을 추출하였고, National Center of Environmental Prediction (NCEP)에서 제공하는 Climate Forecast System version 2 (CFSv2)를 활용하여 6시간, 12시간 후의 태풍 주변 대기 및 해양 예측변수를 추출하였다. 본 연구에서는 각 입력자료의 활용성을 정량화 하기 위하여, 위성 기반 태풍관측영상만을 활용한 MTL 모델(Scheme 1)과 수치예보모델을 융합적으로 활용한 MTL 모델(Scheme 2)을 구축하고, 각 모델의 훈련 및 검증 성능을 정량적으로 비교하였다. 실시간 강도 추정의 결과 scheme 1과 scheme 2에서 비슷한 성능을 보이는 반면, 6시간, 12시간 후 태풍강도예측의 경우 scheme 2에서 각각 13%, 16% 개선된 결과를 보였다. 태풍 단계별 예측성능에 대한 분석을 시행한 결과, 저강도 태풍일수록 낮은 평균제곱근오차를 보인 반면, 대부분의 강도 단계에서 평균제곱근편차비는 30% 미만의 값을 보이며 유의미한 검증 결과를 보였다. 이에 본 연구에서 제시한 두가지 모델을 기반으로 2014년 발생한 태풍 HALONG의 시계열검증을 시행하였다. 그 결과, scheme 1의 경우 태풍 초기발달단계에서 태풍의 강도를 약 20 kts가량 과대 추정하는 경향을 보이는데, 환경예측자료를 융합한 scheme 2에서는 오차가 약 5 kts가량으로 과대 추정 경향이 줄어들었다. 본 연구에서 제시하는 현재, 6시간, 12시간 후 강도를 동시에 추출하는 MTL 모델은 Single-tasking model 대비 약 300%의 시간 효율을 보이며, 향후 신속한 태풍 예보 정보 추출에 큰 기여를 할 수 있을 것으로 기대된다.

낙동강 하류역의 주요 폭풍해일고 검토 (Analysis of Principal Storm Surge in the Downstream of Nakdong River)

  • 김다인;김강민;이중우;권소현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.34-35
    • /
    • 2018
  • 낙동강 하류역은 최근의 퇴적우세 지형변화와 더불어, 기후변화에 따른 태풍강도 강화 등으로 인한 해일고 증가가 우려된다. 따라서, 과거 태풍자료를 수집 분석한 후 연구지역에 가장 큰 영향을 미친 태풍을 모델 태풍으로 선정하여 낙동강 하류역에 위치한 주요지점별 폭풍해일고 변화를 파악하였다. 실험결과, 최대 폭풍해일고는 태풍 매미 내습시에 나타났으며, 하단 매립지 전면에서 1.1~1.5m, 명지주거단지 전면에서 1.2~1.3m, 녹산국가산업단지 전면에서 1.3~1.5m로 하단 매립지 전면이 가장 크게 나타났다. 향후, 과거 지형변화를 고려한 폭풍해일고 검토를 통하여 최근의 급격한 지형변화로 인한 영향을 파악한 대비를 해야 할 것으로 사료된다.

  • PDF