• Title/Summary/Keyword: 모델 이해

Search Result 2,808, Processing Time 0.034 seconds

A Development and Application of the Teaching and Learning Model of Artificial Intelligence Education for Elementary Students (초등학생의 인공지능 교육을 위한 교수 학습 모델 개발 및 적용)

  • Kim, Kapsu;Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.139-149
    • /
    • 2017
  • Artificial intelligence education is very important in the 21st century knowledge information society. Even if it is very important to understand artificial intelligence and practice computer programming in computer education in the fourth industrial revolution, but there is no teaching and learning model to understand artificial intelligence and computer programming education. In this paper, the proposed model consists of problem understanding step, data organizing step, artificial intelligence model setting step, programming step, and report writing step. At the program step, students can choose to copy, transform, create, and challenge steps to their level. In this study, the validity of the model was proved by the Delphi evaluation of elementary school teachers. The results of this study provide a good opportunity for elementary school students to practice artificial intelligence programs.

ORMN: A Deep Neural Network Model for Referring Expression Comprehension (ORMN: 참조 표현 이해를 위한 심층 신경망 모델)

  • Shin, Donghyeop;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.

A Study on Personas Models for Car Navigation Developing (자동차 내비게이션 개발을 위한 페르소나 모델 연구)

  • Oh, See-Hyung;Kim, Jung-Hee;Choi, Hak-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.163-171
    • /
    • 2010
  • This research has studied developing the persona model based on alan cooper's user oriented design which is newly in the limelight in the field of product design process. As developing the persona model, In-depth interview and FGI(focus group interview) has been conducted for extracting car navigation user group's motivation and using attribute. Based on research, three different car navigation user group were divided-low using & understanding the function group, medium using & well understanding the function group, heavy using & well understanding the function group. This research yielded the foundation for setting the persona model and this persona gives the key factor for producing the user oriented user Interface design after all.

UML Feature Model Editor For Consistency (일관성을 보장하는 UML 특성모델 편집기)

  • Lim Yong-Sub;Kim Ji-Hong
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.207-210
    • /
    • 2006
  • 소프트웨어 프로덕트 라인 공학은 공통성과 가변성 식별을 통해 소프트웨어 재사용을 극대화시키는 접근방법으로 이를 지원하는 특성모델 작성도구에 대한 연구가 다수 진행되고 있다. 하지만 FODA 방식의 특성다이어그램을 지원하는 도구들은 특성다이어그램과 추가적인 특성제약사항을 분리하여 명세하기 때문에, 특성모델의 이해와 두 명세 사이의 일관성 보장이 어렵다. 따라서 본 논문에서는 UML을 이용하여 특성다이어그램에 추가적인 특성제약사항을 함께 표현함으로써 특성모델의 이해를 돕고, UML 특성다이어그램의 작성규칙 검사를 통하여 일관성을 보장하는 도구를 제안한다. 이를 기반으로 한 UML 특성모델 편집기를 통하여 개발자는 보다 쉽게 특성모델링을 수행하고, 일관성 있는 특성모델을 작성할 수 있다.

  • PDF

Combining Imitation Learning and Reinforcement Learning for Visual-Language Navigation Agents (시각-언어 이동 에이전트를 위한 모방 학습과 강화 학습의 결합)

  • Oh, Suntaek;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.559-562
    • /
    • 2020
  • 시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이타에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델은 서로 다른 두 학습 간에 발생 가능한 학습 불균형도 고려하여 손실 정규화를 포함하고 있다. 또, 제안 모델에서는 기존 연구들에서 사용되어온 목적지 기반 보상 함수의 문제점을 발견하고, 이를 해결하기 위해 설계된 새로은 최적 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실들을 통해, 제안 모델의 높은 성능을 입증하였다.

Domain-Adaptive Pre-training for Korean Document Summarization (도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약)

  • Hyungkuk Jang;Hyuncheol, Jang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.

Deep Learning Methods for Explainable Image Recognition (설명 가능한 이미지 인식을 위한 채널 주의 기반 딥러닝 방법)

  • BaiNa;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.586-589
    • /
    • 2024
  • 본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.

A Korean to English Dialogue Machine Translation System ($\Rightarrow$영 대화체 기계번역 시스템)

  • 서정연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.65-70
    • /
    • 1994
  • 대화체는 문어체와는 달리 생략과 대용현상이 빈번히 발생하고, 문장의 표면적 의미외에 화자가 전달하고자 하는 의도를 내포하고 있다. 그러므로 대화체 번역은 언어적 분석에 의한 단순한 번역이 아닌, 이해에 기반한 번역이어야 한다. 본 논문에서는 대화의 상황을 모델링한 대화모델을 이용하여 이해에 기반한 대화체 기계번역을 시도하였다. 또한 대화체 기계번역이 자동통역 등에 응용된다고 할 때, 실시간 번역과 불완전한 입력과 같은 예외 상황에 대한 적절한 대응이 보장되어야 한다. 이러한 점을 반영하기 위하여 지식기반 모델과 확률 기반 모델을 결합한 해석, 생성 시스템을 구현하여 효율성과 견고성을 갖춘 이해에 기반한 대화체 기계번역 시스템을 연구하고자 한다. 이 연구는 한국통신으로부터 지원을 받아서 수행하고 있는 과제로써 현재 3000단어 수준의 실제 대화를 대상으로 한->영 대화 번역에 대해 실험을 하고 있으며, 시스템의 확장성을 고려한 지식 베이스-사전, 문법 등-를 구축하였다.

  • PDF

An Augmented Reality Authoring for Spatiotemporal Table Information (시-공간 도표정보의 증강현실 기반 저작기법)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.636-642
    • /
    • 2007
  • 산업 전반에 적용되는 과학, 공학 분야에는 그 목적에 따라 다양한 형태의 정보가 발생한다. 정보는 이용하는 목적에 따란 가공하는 형식과 표현하는 방식이 달라지며, 정보에 직접적으로 접근하는 사용자에게 어떻게 효과적으로 전달할 것인가 하는 문제는 정보 관리 분야에서 매우 중요한 이슈가 되고 있다. 정보를 사용자에게 보다 명확하게 전달하고, 관리하기 위해서는 원천 데이터를 가공하여 가시화(visualization)하는 과정을 거친다. 정보가시화는 원천데이터를 데이터모델로 정리한 후, 가시화구조(visual structure)로 재정의 한다. 실질적인 가시적 결과는 가시화 구조의 데이터들을 정보모델(information model)상에 반영할 때 이루어진다. 본 논문에서는 건물내부에서 진행되는 행사에 대한 시간-공간적인 정보를 정리한 도표 메타포(table metaphor)를 초기 데이터 모델로 사용하여 가시화 하는 과정을 수행한다. 정보 가시화 과정과 저작 과정은 증강현실(augmented reality) 환경에서 이루어진다. 행사가 진행되는 장소의 건물 구조도(map)상에서 각 장소에서 발생하는 정보들을 재배열하고 정리함으로써, 저작자로 하여금 정보 그 자체에 대한 이해뿐만이 아니라, 해당 정보에 대한 공간적인 이해도 함께 가능하게 한다. 이 같은 몰입형(immersive) 저작시스템은 정보에 대한 공간적인 분배가 필요한 저작에서는 매우 유용하며, 저작하는 환경 자체가 가시화의 결과물이 되므로 정보 저작에 대한 가시적 이해를 최대화 시킬 수 있다.

  • PDF

Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching (과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식)

  • Kang, Nam-Hwa
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.143-154
    • /
    • 2017
  • Science inquiry has long been emphasized in Korean science education. Scientific modeling is one of key practices in science inquiry with a potential to provide students with opportunities to develop their own explanations and knowledge thereafter. The purpose of this study is to investigate teacher's understanding of models in science and science teaching. A professional development program on Models (PDM) was developed and refined through three times of implementation while teachers' conceptions of models and modeling were examined. A total of 29 elementary and secondary teachers participated in this study. A survey based on model use of scientists in the history of science was developed and used to collect data and audio recordings of discussions among teachers and artifacts produced by the teachers during PDM were also collected. Three ways of ontological and two ways of epistemological understanding of models and modeling were found in teachers' ideas. After PDM, a quarter of the teachers changed their ontological understanding whereas very few changed their epistemological understanding. In contrast, more than two thirds of the teachers deepened and extended their ideas about using models and modeling in teaching. There were no clear relationships between teachers' understanding of models and ways and ideas about using models in science teaching. However, teachers' perceptions of school conditions were found to mediate their intention to use models in science teaching. The findings indicate possible approaches to professional development program content design and further research.