The Transactions of the Korea Information Processing Society
/
v.13
no.9
/
pp.421-428
/
2024
Recently, services utilizing large-scale language models (LLMs) such as GPT-4 and LLaMA have been released, garnering significant attention. These models can respond fluently to various user queries, but their insufficient training on Korean data raises concerns about the potential to provide inaccurate information regarding Korean culture and language. In this study, we selected eight major publicly available models that have been trained on Korean data and evaluated their understanding of Korean culture using a dataset composed of five domains (Korean language comprehension and cultural aspects). The results showed that the commercial model HyperClovaX exhibited the best performance across all domains. Among the publicly available models, Bookworm demonstrated superior Korean language proficiency. Additionally, the LDCC-SOLAR model excelled in areas related to understanding Korean culture and language.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.36-40
/
2021
다양한 Masked Language Modeling을 통해 학습한 사전 학습 모델들은 질의응답 시스템에서 매우 높은 성능을 보여주고 있다. 이러한 강력한 성능에도 불구하고 그러한 모델들이 질의를 정확히 이해하고 정답을 예측하는 것인지, 혹은 질의에 등장하는 특정 단어와 잘 나타나는 단어들을 기반으로 정답을 예측하는 것인지에 대한 분석은 아직 충분하지 않다. 이러한 사전학습 모델의 질의 이해 능력을 밝히기 위하여, 본 연구에서는 클레버 한스 테스트를 제안한다. 클레버 한스 테스트에서는 의미적 구조적, 의도 유무 측면의 여러 질의 변형이 된 데이터 셋들이 포함되어 있다. 본 연구에서는 클레버 한스 테스트를 통하여 사전학습 모델들이 의미적으로 달라진 질의나 의도가 제거된 질의를 입력으로 받아도 성능이 크게 떨어지지 않는 것을 확인하였고 모델의 질의 이해능력 부족을 실험적으로 시사하였다.
In this paper, we propose a stochastic model for sentence speech understanding using dictionary and thesaurus. The proposed model extracts words from an input speech or text into a sentence. A computer is sellected category of dictionary database compared the word extracting from the input sentence calculating a probability value to the compare results from stochastic model. At this time, computer read out upper dictionary information from the upper dictionary searching and extracting word compared input sentence caluclating value to the compare results from stochastic model. We compare adding the first and second probability value from the dictionary searching and the upper dictionary searching with threshold probability that we measure the sentence understanding rate. We evaluated the performance of the sentence speech understanding system by applying twenty questions game. As the experiment results, we got sentence speech understanding accuracy of 79.8%. In this case, probability ($\alpha$) of high level word is 0.9 and threshold probability ($\beta$) is 0.38.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.711-715
/
2023
본 연구는 대부분의 언어 모델이 사용하고 있는 서브워드 토큰화 과정을 거치지 않고, 바이트 단위의 인코딩을 그대로 다룰 수 있는 토큰-프리 사전학습 언어모델에 대한 것이다. 토큰-프리 언어모델은 명시적인 미등록어 토큰이 존재하지 않고, 전 처리 과정이 단순하며 다양한 언어 및 표현 체계에 대응할 수 있는 장점이 있다. 하지만 관련 연구가 미흡, 서브워드 모델에 대비해 학습이 어렵고 낮은 성능이 보고되어 왔다. 본 연구에서는 한국어를 중심으로 토큰-프리 언어 이해-생성 모델을 사전 학습 후, 서브워드 기반 모델과 비교하여 가능성을 살펴본다. 또한, 토큰 프리 언어모델에서 지적되는 과도한 연산량을 감소시킬 수 있는 그래디언트 기반 서브워드 토크나이저를 적용, 처리 속도를 학습 2.7배, 추론 1.46배 개선하였다.
Jong-Hun Shin;Yohan Lee;Oh-Woog Kwon;Young-Kil Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.517-520
/
2022
지능형 대화 시스템은 줄곧 서비스의 목표와 무관한 사용자 입력을 전달받아, 그 처리 성능을 의심받는다. 특히 종단간 대화 이해 생성 모델이나, 기계학습 기반 대화 이해 모델은 학습 시간대에 한정된 범위의 도메인 입력에만 노출됨으로, 사용자 발화를 자신이 처리 가능한 도메인으로 과신하는 경향이 있다. 본 연구에서는 대화 생성 모델이 처리할 수 없는 입력과 신뢰도가 낮은 생성 결과를 배제하기 위해 불확실성 정량화 기법을 대화 의도 분류 모델에 적용한다. 여러 번의 추론 샘플링이 필요 없는 실용적인 예측 신뢰도 획득 방법과 함께, 평가 시간대와 또다른 도메인으로 구성된 분포 외 입력 데이터를 학습에 노출시키는 것이 분포 외 입력을 구분하는데 도움이 되는지를 실험으로 확인한다.
최근 통신업계에서는 축적된 빅데이터를 활용하여 고객의 특성을 이해하고 맞춤형 마케팅에 이용하려는 노력이 지속되어 왔다. 본 연구에서는 CatBoost 모델을 사용하여 이탈 가능성이 높은 고객을 예측하고 XAI(eXplainable Artificial Intelligence) 기법 중 하나인 SHAP을 적용하여 이탈에 영향을 미치는 요인을 설명하고자 하였다. SHAP의 global explanation 기법을 사용하여 특정 고객 segmentation 에 대한 이해력을 높이고, local explanation 기법을 사용하여 개별 고객에 대한 설명과 개인화 마케팅에 적용 가능성을 제시하였다. 본 연구는 기존의 이탈 예측모델인 블랙박스 모델이 갖는 한계점을 극복하고 고객의 특성을 이해하여 실제 비즈니스에 활용 가능성을 높였다는 점에서 의의를 가진다.
This paper reports an analysis of 19 Chinese and Korean middles school mathematics teachers' understanding of division by fractions. The study analyzes the teachers' responses to the teaching task of generating a real-world situation representing the meaning of division by fractions. The findings of this study suggests that the teachers' conceptual models of division are dominated by the partitive model of division with whole numbers as equal sharing. The dominance of partitive model of division constraints the teachers' ability to generate real-world representations of the meaning of division by fractions, such that they are able to teach only the rule-based algorithm (invert-and-multiply) for handling division by fractions.
Double scale models have been introduced in elementary mathematics textbooks under the 2015 revised mathematics curriculum. However, few studies have examined in detail how students understand or utilize such models. In this study, we analyzed how 154 sixth-grade students who had learned the division of fractions from textbooks containing double scale models understood such models. The results showed that the students tended to identify the components of the model relatively well, but had difficulties exploring the unit or the meaning of the bottom number line of a model. They also had a lot of difficulties using the double scale model to complete the computation process and explain the computation principle. Based on these findings, we discuss the implications of teaching double scale models.
최근 활발히 진행되고 있는 모델 기반 공학에 관한 연구 중 모델 변환은 소스 모델을 입력 받아 다른 차원의 뷰를 제공하는 타겟 모델을 출력한다. 이러한 모델 변환은 메타모델을 사용하여 동일한 시스템을 서로 다른 이해관계자들의 관점에서 이해할 수 있는 방법을 제공한다. 동일한 시스템이라 하더라도 개발자와 시험자 그리고 사용자들이 보는 주요 관점은 다를 수 있다. 본 논문에서는 시험자의 관점에서 수직적 분할 시험이 가능하도록 입력 모델인 UML의 행위 다이어그램으로부터 출력 모델인 단위 시험을 위한 상태 다이어그램으로의 모델 변환에 대해 연구하고, 생성된 상태 다이어그램을 통해 시험 사례를 작성한다.
참조 표현이란 영상 내의 특정 물체를 가리키는 자연어 문장을 의미한다. 그리고 이러한 자연어 참조 표현을 기초로, 한 영상에서 실제로 대상 물체의 영역을 찾아내는 일을 참조 표현 이해라고 한다. 본 논문은 참조 표현 이해를 위한 새로운 심층 신경망 모델과 학습 방법을 제안한다. 본 논문에서 제안하는 모델은 효과적인 참조 표현 이래를 위해, 참조 표현에서 언급하는 대상 물체와 보조 물체를 모두 고려할 뿐만 아니라, 두 물체간의 관계정보도 활용한다. 또한, 본 논문에서 제안하는 모델은 이러한 다양한 맥락 정보들을 참조 표현 의존적인 방식으로 가중 결합함으로써, 참조 표현에 부합하는 대상 물체 영역을 보다 정확히 탐지해낼 수 있도록 설계하였다. 본 논문에서는 대규모 참조 표현 데이터 집합인 Google RefExp를 이용한 성능 비교 실험들을 통해, 제안하는 모델의 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.