• Title/Summary/Keyword: 모델 의미론

Search Result 346, Processing Time 0.032 seconds

원전 상용기기(Commercial Grade Item) 승인 및 평가 방법론

  • 김장열;김정택;권기춘;이기영;구인수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.239-243
    • /
    • 1997
  • 상용기기(Commercial Grade Item CGI)란 구조물, 시스템, 콤포넌트 또는 그것들의 일부분을 구성하는 것으로써 안전기능(safety function)에 영향을 미치지만 basic component로써 설계되거나 제작되지 아니한 것을 의미한다 즉, ASME/NQA-1 Appendix B의 엄격한 품질보증 프로그램 하에서 설계되고 제작되지 아니한 것으로써 원전 이외의 분야에서 상용적으로 널리 사용되고 있는 기기들을 의미한다. 본 논문에서는 이러한 원전 안전등급 분류기준 Non-Nuclear System(NNS) Simple에 해당되는 Non-Safety CGI를 Safety Application의 Nuclear Grade Item으로 사용하기 위한 CGI 평가 및 승인 절차를 제안하고 새로운 CGI 생명주기 모델을 제시하였다. 본 논문에서 제시한 CGI Dedication 절차 및 CGI 생명주기 모델은 우리나라 원전 계측제어계통의 디지털 upgrade plan 및 교체, 신규원전 상용기기 평가방법론에 적용할 수 있을 것이다. CGI Dedication은 10여년전부터 원자력계가 고민해온 분야로써 원전 계측제어계통의 디지털화에 따라 상용 (Commercial Off The Shelf : COTS) 소프트웨어의 승인과 함께 전세계적으로 hot issue가 될 만큼 활발한 연구와 논의가 현재 진행되고 있는 분야이다.

  • PDF

Methodology for Constructing Data for Automatic Generation of Emotional Copywrite (감성적 광고 카피 자동 생성을 위한 데이터 구축 방법론)

  • Jimin Seong;Haeun Shin;Jiyoon Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.336-341
    • /
    • 2023
  • 초대규모 언어모델의 뛰어난 생성 기술이 실질적인 부분에서 많은 도움을 주고 있음에도 불구하고 사람들의 마음을 움직일 수 있는 매력적인 광고 카피를 생성하기에는 아쉬운 점이 많다. 이 연구는 효과적인 광고 카피 자동생성을 위한 데이터 구축 방법론 연구로, 데이터에 일관적으로 학습시킬 수 있는 감성적 카피의 문체적 특징을 프레임워크로 정의하고 이를 모델에 적용한 결과를 보여 데이터 설계 방법론의 유효성을 검증하고자 하였다. 실험 결과 문체 적합성 측면에서 성공적인 결과를 확인한 것에 비해, 한국어 보조사와 같이 미세한 어감 차이를 발생시키는 요소나 의미적 중의성 해석 등의 고차원적인 한국어 구사능력을 필요로 하는 부분에서 생성모델의 개선 여지를 발견할 수 있었다. 본 연구에서 보인 감성형 카피 생성을 위한 프레임워크는 마케팅 실무에서도 유용하게 사용될 수 있을 뿐만 아니라, 고객 세그멘테이션 분석이 이루어진다면 타깃 고객의 취향을 고려한 효과적이고 맞춤화된 광고 카피를 생성에 기여할 수 있을 것으로 기대된다.

  • PDF

An In-depth Analysis on Traffic Flooding Attacks Detection using Association Rule Mining (연관관계규칙을 이용한 트래픽 폭주 공격 탐지의 심층 분석)

  • Jaehak Yu;Bongsu Kang;Hansung Lee;Jun-Sang Park;Myung-Sup Kim;Daihee Park
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.1563-1566
    • /
    • 2008
  • 본 논문에서는 데이터의 전처리과정으로 SNMP MIB 데이터에 대한 속성 부분집합의 선택 방법(attribute subset selection)을 사용하여 특징선택 및 축소(feature selection & reduction)를 실시하였다. 또한 데이터 마이닝의 대표적인 해석학적 분석 모델인 연관관계규칙기법(association rule mining)을 이용하여 트래픽 폭주 공격 및 공격유형별 SNMP MIB 데이터에 내재되어 있는 특징들을 규칙의 형태로 추출하여 분석하는 의미론적 심층해석을 실시하였다. 공격유형에 대한 패턴 규칙의 추출 및 분석은 공격이 발생한 프로토콜에 대해서만 서비스를 제한하고 관리할 수 있는 정책적 근거를 제공함으로써 보다 안정적인 네트워크 환경과 원활한 자원관리를 지원할 수 있다. 본 논문에서 제시한 트래픽 폭주 공격 및 공격유형별 데이터로부터의 자동적 특징의 규칙 추출 및 의미론적 해석방법은 침입탐지 시스템을 위한 새로운 방법론에 모멘텀을 제시할 수 있다는 긍정적인 가능성과 함께 침입탐지 및 대응시스템의 정책 수립을 지원할 수 있을 것으로 기대된다.

Word Sense Disambiguation Using Knowledge Embedding (지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소)

  • Oh, Dongsuk;Yang, Kisu;Kim, Kuekyeng;Whang, Taesun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF

The Re-inspection on The Explanatory Model ofXi Ming of Chu Hsi'sThought of "Li Yi Fen Shu" (朱熹 「理一分殊」 的 <西銘> 詮釋模式再考察)

  • Lin, Le-chang
    • Journal of Korean Philosophical Society
    • /
    • v.141
    • /
    • pp.167-185
    • /
    • 2017
  • Chu Hsi inherited the proposition of Cheng Yi, and it spent him over ten years to finish writing the works of Xi Ming Jie, thus, making the thought of "Li Yi Fen Shu" bethe explanatory model of Xi Ming, therefore, playing the role to determine the tone of Xi Ming. At first, the thought of "Li Yi Fen Shu is a concept to embody the ethical significance of Xi Ming. But in terms of all the discussion about "Li Yi Fen Shu" of Chu Hsi in his life, this proposition is not only for the ethical significance of Xi Ming, but also includes much more general philosophical significance, revealing the general and special relationship of things. The former is the narrow "Li Yi Fen Shu", but the latter is the generalized one. This article won't discuss the generalized one, and it will take the narrow one as the research object. In the past research in academic circles, some scholars thinks that the proposition of "Li Yi Fen Shu" accords with the aim of Xi Ming, some others don't think so. Contrary to both of the two views, this article thinks that there is some conformity and inconformity between the explanatory model of "Li Yi Fen Shu" of Chu Hsi and the aim of Xi Ming. In other words, Contributions and limitations coexist when Chu Hsi explains Xi Ming in the model of "Li Yi Fen Shu", and there is not only the development to the intention of Xi Ming, but alsothe far meaning away from the aim of Xi Ming.

A Study for Sequence-to-sequence based Korean Abstract Meaning Representation (AMR) Parsing (Seq2seq 기반 한국어 추상 의미 표상(AMR) 파싱 연구)

  • Hao Huang;Hyejin Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.257-261
    • /
    • 2022
  • 본 연구에서는 한국어 AMR 자동 파싱을 하기 위해 seq2seq 방법론을 적용하였다. Seq2seq 방법론은 AMR 파싱 태스크를 자연어 문장을 바탕으로 선형화된(linearization) 그래프의 문자열을 번역해내는 과정을 거친다. 본고는 Transformer 모델을 파싱 모델로 적용하여 2020년 공개된 한국어 AMR와 자체적으로 구축된 한국어 <어린 왕자> AMR 데이터에서 실험을 진행하였다. 이 연구에서 seq2seq 방법론 기반 한국어 AMR 파싱의 성능은 Smatch F1-Score 0.30으로 나타났다.

  • PDF

Semantic Segmentation of Drone Imagery Using Deep Learning for Seagrass Habitat Monitoring (잘피 서식지 모니터링을 위한 딥러닝 기반의 드론 영상 의미론적 분할)

  • Jeon, Eui-Ik;Kim, Seong-Hak;Kim, Byoung-Sub;Park, Kyung-Hyun;Choi, Ock-In
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.199-215
    • /
    • 2020
  • A seagrass that is marine vascular plants plays an important role in the marine ecosystem, so periodic monitoring ofseagrass habitatsis being performed. Recently, the use of dronesthat can easily acquire very high-resolution imagery is increasing to efficiently monitor seagrass habitats. And deep learning based on a convolutional neural network has shown excellent performance in semantic segmentation. So, studies applied to deep learning models have been actively conducted in remote sensing. However, the segmentation accuracy was different due to the hyperparameter, various deep learning models and imagery. And the normalization of the image and the tile and batch size are also not standardized. So,seagrass habitats were segmented from drone-borne imagery using a deep learning that shows excellent performance in this study. And it compared and analyzed the results focused on normalization and tile size. For comparison of the results according to the normalization, tile and batch size, a grayscale image and grayscale imagery converted to Z-score and Min-Max normalization methods were used. And the tile size isincreased at a specific interval while the batch size is allowed the memory size to be used as much as possible. As a result, IoU was 0.26 ~ 0.4 higher than that of Z-score normalized imagery than other imagery. Also, it wasfound that the difference to 0.09 depending on the tile and batch size. The results were different according to the normalization, tile and batch. Therefore, this experiment found that these factors should have a suitable decision process.

Masked language modeling-based Korean Data Augmentation Techniques Using Label Correction (정답 레이블을 고려한 마스킹 언어모델 기반 한국어 데이터 증강 방법론)

  • Myunghoon Kang;Jungseob Lee;Seungjun Lee;Hyeonseok Moon;Chanjun Park;Yuna Hur;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.485-490
    • /
    • 2022
  • 데이터 증강기법은 추가적인 데이터 구축 혹은 수집 행위 없이 원본 데이터셋의 양과 다양성을 증가시키는 방법이다. 데이터 증강기법은 규칙 기반부터 모델 기반 방법으로 발전하였으며, 최근에는 Masked Language Modeling (MLM)을 응용한 모델 기반 데이터 증강 연구가 활발히 진행되고 있다. 그러나 기존의 MLM 기반 데이터 증강 방법은 임의 대체 방식을 사용하여 문장 내 의미 변화 가능성이 큰 주요 토큰을 고려하지 않았으며 증강에 따른 레이블 교정방법이 제시되지 않았다는 한계점이 존재한다. 이러한 문제를 완화하기 위하여, 본 논문은 레이블을 고려할 수 있는 Re-labeling module이 추가된 MLM 기반 한국어 데이터 증강 방법론을 제안한다. 제안하는 방법론을 KLUE-STS 및 KLUE-NLI 평가셋을 활용하여 검증한 결과, 기존 MLM 방법론 대비 약 89% 적은 데이터 양으로도 baseline 성능을 1.22% 향상시킬 수 있었다. 또한 Gate Function 적용 여부 실험으로 제안 방법 Re-labeling module의 구조적 타당성을 검증하였다.

  • PDF

Application of object-oriented methodology for structural analysis and design (구조해석에서 객체지향 방법론의 도입)

  • 김홍국;이주영;김재준;이병해
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.123-133
    • /
    • 1995
  • This study presents an application of object-oriented methodology for structural design process. A prototype of integrated structural design system is developed by introducing a structural analysis object model(SAOM) and structural design object model (SDOM). This SAOM module, which models structural member, performs structural analysis using FEM approach and the SDOM module checks structural members based on Korea steel design standard. The abstraction, encapsulation and reusability properties of the proposed models are in establishing the integrated structural design system.

  • PDF

A Design and Implementation on Ontology for Public Participation GIS (시민참여형 GIS를 위한 온톨로지 설계 및 구현)

  • Park, Ji-Man
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.372-394
    • /
    • 2009
  • This study investigates the ontology-based public participation GIS(PPGIS). The major reason that ontology-based GIS has attracted attention in semantic communication in recent year is due to the wide availability of geographical variable and the imminent need for turning such recommendation into useful geographical knowledge. Therefore, this study has been focused on designing and implementing the pilot tested system for public participation GIS. The applicability of the pilot tested was validated through a simulation experiment for history tourism in Guri city Gyeongi-do, Focused on the methodology, the life cycle model which involves regional statues and user recognition, can be viewed as an important preprocessing step(specification, conceptualization, formalization, integration and implementation) for recommended geographical knowledge discovery by axiom. Focusing on practicality, ontology in this study would be recommended for geographical knowledge through reasoning. In addition, ontology-based public participation GIS would show integration epistemological and ontological approach, and be utilized as an index which is connected with semantic communication. The results of the pilot system was applied to the study area, which was a part of scenario. The model was carried out using axiom of logical constraint in the meaning of human-activity.