• Title/Summary/Keyword: 모델 기준

Search Result 4,583, Processing Time 0.038 seconds

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Accuracy Assessment of 3D Geo-positioning for SPOT-5 HRG Stereo Images Using Orbit-Attitude Model (궤도기반 모델을 이용한 SPOT-5 HGR 입체영상의 3차원 위치결정 정확도 평가)

  • Wie, Gwang-Jae;Kim, Deok-In;Lee, Ha-Joon;Jang, Yong-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.529-534
    • /
    • 2009
  • In this study, we investigate the feasibility of modeling entire image strips that has been acquired from the same orbital segments. We tested sensor models based on satellite orbit and attitude with different sets(Type1 ~ Type4) of unknowns. We checked the accuracy of orbit modeling by establishing sensor models of one scene using control points extracted from the scene and by applying the models to adjacent scenes within the same orbital segments. Results indicated that modeling of individual scenes with 1st or 2nd order unknowns was recommended. We tested the accuracy of around control points, digital map using the HIST-DPW (Hanjin Information Systems & Telecommunication Digital Photogrammetric Workstation) As a result, we showed that the orbit-based sensor model is a suitable sensor model for making 1/25,000 digital map.

Basic Study on Logical Model Design of Underground Facilities for Waterworks (상수도 지하시설물의 논리적 모델 설계에 관한 기초 연구)

  • Jeong, Da Woon;Yu, Seon Cheol;Min, Kyung Ju;Lee, Ji Yeon;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.533-542
    • /
    • 2020
  • This study proposes the logical data model design of a spatial data model that complies with international standards for the waterworks of underground facilities. We conduct a preliminary study related to underground spatial data standards and data models, and review the status of the existing systems. Then, we defined the conceptual design direction of underground spatial data model based on the problems and issues. Next, we defined the terminology, classification, semantic relationships of waterworks. Next, for the conceptual design of the underground spatial data model, we defined the naming criteria for all data according to the waterworks classification. In addition, a logical model is drawn and described using UML (Unified Modeling Language) diagrams. Based on the results, it is expected that the accuracy related to underground facilities data will be improved.

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

Boresight Calibration Comparison Using Geoid Models (지오이드 모델에 따른 Boresight 검정 비교)

  • So, Jae Kyeong;Park, Young Su;Won, Jae Ho;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.291-297
    • /
    • 2016
  • Direct georeferencing has become widespread in the field of digital aerial photogrammetry; as a result, the boresight calibration has become an essential component of the procedure to calculating exterior orientation parameters of aerial photographs accurately. During this procedure, a reference is used for the height of the geoid model, and the calibration results can appear different depending on the geoid model. The exterior orientation parameters calculated through direct georeferencing during boresight calibration may have varied values according to the corresponding geoid model. With that in mind, the effects of the geoid model on the boresight calibration were analyzed through three different cases. The geoid models used in the experiments were EGM96, EGM08, and KNGeoid14, and, through boresight calibration, the datum shift and boresight angle for each model was computed. After calculating the exterior orientation of each case, the GCP (Ground Control Point) was verified using the DPW (Digital Photogrammetry Workstation). In each case, results in the boresight calibration acquired through the geoid model demonstrated a difference in the Z datum, the exterior orientation heights Z, and the rotation Ω and Φ. After utilizing the DPW in each case and comparing it to the GCP, the difference in accuracy in accordance with the geoid model was found to be within 3cm, and it was concluded that the geoid model did not have a significant impact on boresight calibration.

An Indeterminate Strut-Tie Model and Load Distribution Ratio for Reinforced Concrete Corbels (철근콘크리트 코벨의 부정정 스트럿-타이 모델 및 하중분배율)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1065-1079
    • /
    • 2014
  • The ultimate behavior of reinforced concrete corbel is complicated due to the primary design variables including the shear span-to-effective depth ratio a/d, flexural reinforcement ratio, load condition, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strength and complicated structural behavior is proposed for the design of the reinforced concrete corbels with shear span-to-effective depth ratio of $a/d{\leq}1$. A load distribution ratio, defined as the fraction of applied load transferred by horizontal truss mechanism, is also proposed to help structural designers perform the design of reinforced concrete corbels by using the strut-tie model approaches of current design codes. For the development of the load distribution ratio, numerous material nonlinear finite element analyses of the proposed indeterminate strut-tie model were conducted by changing primary design variables. The ultimate strengths of reinforced concrete corbels tested to failure were evaluated by incorporating the proposed strut-tie model and load distribution ratio into the ACI 318-11's strut-tie model method. The validity of the proposed model and load distribution ratio was examined by comparing the strength analysis results with those by the ACI 318-11's conventional design method and strut-tie model methods of current design codes.

An Examination of the Minimum Reinforcement Ratio for Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2017
  • The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code's value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code's value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.

Statistical Characteristic of Mechanical Properties of Concrete (콘크리트 역학적 성질의 통계적 특성)

  • Kim, Jee-Sang;Shin, Jeong-Ho;Choi, Yeon-Wang;Moon, Jea-Heum;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.657-660
    • /
    • 2008
  • The mechanical properties of concrete such as compressive strength, tensile strength, and modulus of elasticity, are considerably influenced by various factors including locality. The material property prescriptions in national concrete design codes should reflect them. In Korea, they have not been studied systematically yet. A new performance-based design code is being prepared in Korea as a government-supported project and it has a plan to make new material prescriptions adopting domestic research results. As a starting point for the research on material properties, the statistical characteristics of mechanical properties of concrete are studied. In this paper, a probabilistic model of compressive strength, relationship between compressive strength and splitting tensile strength and compressive strength and elastic modulus are proposed based on experimental data.

  • PDF

A Development of Algorithm and Programing Curriculum Model for Elementary School Students (초등학생을 위한 알고리즘 및 프로그래밍 교육과정 모델 개발)

  • Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.459-466
    • /
    • 2015
  • The content of software education for elementary school students in the 2015 revisions to the national curriculum are not sufficient because class time dedicated to software education has been limited to 17 hours in fifth and sixth grades. In this study, I developed the algorithm and programming model for Korea. I analyzed domestic and international software education curricula as well as training platforms, such as Code.org, Blockly Games, and Entry. The suggested algorithm and programming framework is known as the Rainbow system, which is divided into 7 steps, 14 criteria, and 3 content areas--understanding the algorithm, the actual programming, and evaluation of the program. Using the Rainbow system, once students have completed a level they can be promoted to the next stage, regardless of their grade.

Analysis and Synthesis of Facial Expression using Base Faces (기준얼굴을 이용한 얼굴표정 분석 및 합성)

  • Park, Moon-Ho;Ko, Hee-Dong;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.827-833
    • /
    • 2000
  • Facial expression is an effective tool to express human emotion. In this paper, a facial expression analysis method based on the base faces and their blending ratio is proposed. The seven base faces were chosen as axes describing and analyzing arbitrary facial expression. We set up seven facial expressions such as, surprise, fear, anger, disgust, happiness, sadness, and expressionless as base faces. Facial expression was built by fitting generic 3D facial model to facial image. Two comparable methods, Genetic Algorithms and Simulated Annealing were used to search the blending ratio of base faces. The usefulness of the proposed method for facial expression analysis was proved by the facial expression synthesis results.

  • PDF