• Title/Summary/Keyword: 모델 기반 방식

Search Result 2,244, Processing Time 0.071 seconds

Integrating Transition-based and Graph-based Dependency Parsers using Dual Decomposition (Dual Decomposition을 이용한 전이기반 및 그래프 기반 의존 파서 통합 모델)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.25-29
    • /
    • 2019
  • 딥러닝을 이용한 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식으로 나뉘어 연구되어 왔다. 전이 기반 방식은 입력 버퍼와 스택으로부터 자질을 추출하여 모델을 통해 액션을 결정하고 액션에 따라 파스트리를 생성해 나가는 상향식(Botton-Up)의 지역적 모델이고 그래프 기반 방식은 문장 내의 모든 단어에 대해 지배소, 의존소가 될 수 있는 점수를 딥러닝 모델을 통해 점수화하여 트리를 생성하는 전역적 모델이다. 본 논문에서는 Dual Decomposition을 이용하여 하이브리드 방식으로 전이 기반 파서와 그래프 기반 파서를 결합하는 방법을 제안하고 BERT 언어 모델을 반영하여 세종 데이터 셋에서 UAS 94.47%, LAS 92.58% 그리고 SPMRL '14 데이터 셋에서 UAS 94.74%, UAS 94.20%의 성능을 보여 기존 그래프 기반 파서의 성능을 더욱 개선하였다.

  • PDF

A Multimedia-based Hybrid Diagnostic System (멀티미디어기반 통합 방식 고장 진단 시스템)

  • 양찬범;양석훈;박영택
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • 현재 산업의 고도상장과 함께 주기적으로 고장을 진단하여야 하는 기기의 수와 종류도 급속도로 증가하고 있다. 이에 따라 여러 산업 분야에서 고장진단 시스템의 이용이 늘고 있는 추세이다. 이러한 고장진단 시스템은 경험적 고장진단 방식과 모델기반 고장 진단 방식으로 크게 나눌 수 있다. 경험적 고장진단 방식은 전문가가 경험한 사실의 범주에서는 신속하게 고장의 원인을 진단할 수 있지만 전문가가 경험하지 못했던 상황에 대해서는 융통성 있게 진단하지 못한다. 한편 기기의 물리적 기능적 지식을 기반으로 하는 모델기반 고장진단 방식을 변화하는 상황에 적절하게 대처하여 고장의 원인을 진단할 수 있다. 그러나 모델기반 고장진단 방식을 기기의 구조로부터 증상들을 추론하여 원인을 파악하므로 탐색 범위가 넓어 진단속도가 늦다는 단점이 있다. 본 연구에서는 이러한 경험적 고장진단 방식과 기기의 모델기반 고장진단 방식의 장점을 결합하여 신속하고 정확하게 고장진단을 할 수 있는 통합방식 고장진단 시스템을 제시한다. 통합방식 고장진단 시스템은 대상 기기의 진단 상태에 따라서 동적으로 적절한 진단 방식을 선택하기 위해서 블랙보드 추론기관을 이용한다. 또한 각 진단방식이 생성하는 가설 및 사실들을 효과적으로 통합하여 추론하기 위해서 제어지식을 정의하여 적용한다. 그리고 사용자와 진단 시스템간에 원활한 의사소통을 위해서 멀티미디어 기반 인터페이스를 채용하여 통합방식 진단 시스템을 구축한다.

  • PDF

An Analysis of Contention-Based Forwarding in Lossy Wireless Links (손실이 있는 무선 링크에서의 경쟁기반 전달방식 분석)

  • Na, Jong-Keun;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Contention-based forwarding in wireless ad-hoc networks reduces transmission failure rate by selecting one receiver with good channel among multiple receivers. However, contention-based forwarding may increase transmission latency due to the collision problem caused by the simultaneous transmission among multiple receivers. In this paper, we present an analytic model that reflects the delay and collision rate of contention-based forwarding in lossy wireless links. Through the analytic model, we calculate the expected delay and progress in one-hop transmission under given wireless link model and delay model. Based on the analytic results, we observe that delay model should be adapted to wireless link model for optimal performance in contention-based forwarding.

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

RP model decomposition algorithm for making 3D layer (3D layer 생성을 위한 RP 모델 분할 알고리즘)

  • 이재호;박준영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.724-727
    • /
    • 2000
  • Rapid Prototyping(RP)이란 3차원 솔리드 모델을 단면화한 뒤 하나씩 적층하는 가공방식을 총칭한다. 이때 단면화하는 방법에 따라서 uniform, adaptive slicing으로 나뉘며, 입력 모델에 따라서 direct slicing과 STL을 이용한 방식으로 나뉜다. 적층 방법에 따라서는 연속된 2D 윤곽을 기반으로 적층하는 vertical layer 방식과 인접한 두 개의 2D 윤곽들을 연결하며 만들어진 3D layer를 기반으로 가공하는 sloping layer방식으로 나뉠 수 있다. 현재 상용 RP 시스템들에서는 거의 모든 경우 vertical layer 방식이 채택되어 사용되고 있다. RP와 절삭 공정, 예를 들면 CNC 밀링의 장점을 효율적으로 결합하기 위해서는 임의의 복잡한 형상을 갖는 솔리드 모델을 정밀도에 제한이 없이 제조할 수 있어야 한다. 그러나 절삭 공정은 특별한 전문적 지식들을 필요로 한다 또한 상용 RP에서 사용하는 순차적인 적층 작업으로는 가공할 수 없는 형상들이 많다. 대표적인 것으로 지지대를 필요로 하는 형상들이 있다. 이러한 형상들을 지원하기 위해서는 복잡한 3D 형상을 절삭 가능한 형식으로 분할하는 것과 적층 가능한 순서대로 공정 계획하는 것이 필요하게 된다. 본 연구에서는 SDM에서 제시된 3D 분할 방법이 솔리드 모델을 기반으로 전개되어 STL file과 같은 삼각다면체 형식으로 근사화된 모델에 적용하기 어렵다는데 착안하여 STL file에서 읽어들인 삼각 다면체 모델을 가공 가능한 3D 형상으로 분할하는 알고리즘을 제시하고자 한다.

  • PDF

Improvement of Knowledge Retriever Performance of Open-domain Knowledge-Grounded Korean Dialogue through BM25-based Hard Negative Knowledge Retrieval (BM25 기반 고난도 부정 지식 검색을 통한 오픈 도메인 지식 기반 한국어 대화의 지식 검색 모듈 성능 향상)

  • Seona Moon;San Kim;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.125-130
    • /
    • 2022
  • 최근 자연어처리 연구로 지식 기반 대화에서 대화 내용에 자유로운 주제와 다양한 지식을 포함하는 연구가 활발히 이루어지고 있다. 지식 기반 대화는 대화 내용이 주어질 때 특정 지식 정보를 포함하여 이어질 응답을 생성한다. 이때 대화에 필요한 지식이 검색 가능하여 선택에 제약이 없는 오픈 도메인(Open-domain) 지식 기반 대화가 가능하도록 한다. 오픈 도메인 지식 기반 대화의 성능 향상을 위해서는 대화에 이어지는 자연스러운 답변을 연속적으로 생성하는 응답 생성 모델의 성능 뿐만 아니라, 내용에 어울리는 응답이 생성될 수 있도록 적합한 지식을 선택하는 지식 검색 모델의 성능 향상도 매우 중요하다. 본 논문에서는 오픈 도메인 지식 기반 한국어 대화에서 지식 검색 성능을 높이기 위해 밀집 벡터 기반 검색 방식과 주제어(Keyword) 기반의 검색 방식을 함께 사용하는 것을 제안하였다. 먼저 밀집 벡터 기반의 검색 모델을 학습하고 학습된 모델로부터 고난도 부정(Hard negative) 지식 후보를 생성하고 주제어 기반 검색 방식으로 고난도 부정 지식 후보를 생성하여 각각 밀집 벡터 기반의 검색 모델을 학습하였다. 성능을 측정하기 위해 전체 지식 중에서 하나의 지식을 검색했을 때 정답 지식인 경우를 계산하였고 고난도 부정 지식 후보로 학습한 주제어 기반 검색 모델의 성능이 6.175%로 가장 높은 것을 확인하였다.

  • PDF

Design of a System Model for the Role-Based Access Control for Web-Based Applications (웹 기반 응용을 위한 직물 기반 접근 제어 시스템 모델 설계)

  • Lee Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.63-69
    • /
    • 2004
  • The purpose of this paper is to design a system model which is needed for integrating the secure role-based access control model into web-based application systems. For this purpose, firstly, the specific system architecture model using a user-pull method is presented. This model can be used as a design paradigm. Secondly, the practical system working model is proposed. which specifies the mechanism that performs role-based access control in the environment of web-based application systems. Finally, the comparison and analysis is shown in which the merits with the proposed system model is presented.

  • PDF

'90년대 소프트웨어 개발모델

  • Choe, Rak-Man
    • Electronics and Telecommunications Trends
    • /
    • v.2 no.4
    • /
    • pp.3-9
    • /
    • 1987
  • 본 고는 기존 소프트웨어 산업에서의 기술적인 문제점을 검토하고, 생산성 향상을 통하여 소프트웨어 수급격차를 해소하고, 현재의 소프트웨어 위기를 극복할 수 있는 방안으로서 전통적인 개발모델을 기반으로 하는 진화론적인 접근방식과 automation-based 개발모델을 기반으로 하는 혁신적인 접근방식에 대하여 기술한다.

A Model Using IOT Based Railway Infrastructure Sensor Data for Recognition of Abnormal state (IOT기반 철도인프라 데이터를 활용한 이상상황 인식모델)

  • Jang, Gyu-JIn;Ahn, Tae-Ki;Kim, Young-Nam;Jung, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.771-773
    • /
    • 2018
  • 인공지능(AI), 사물인터넷(IoT)등의 4차 산업기술은 철도안전의 핵심수단으로 부상하고 있으며 차량, 위험관리, 운행관리, 보안관리 등의 점진적인 적용분야 확장을 통해 철도안전에 대한 신뢰성을 향상시킬 수 있는 방안에 대한 관심이 집중되고 있다. 본 논문에서는 IoT 기반의 다양한 철도인프라 데이터를 활용하여 열차주행상태에 영향을 줄 수 있는 이상상황 인식 모델 및 열차자율주행을 위한 제어기술에 필요한 정보로 인프라 상태를 제공하는 방식을 제안한다. 철도 인프라 상황인지에 필요한 데이터는 레일온도, 선로 지정물, 승객 수, 선로 적설량을 지정하였고, 제안 인식모델의 스게노 퍼지추론 방식을 적용한 후 철도차량 운전관련 취급규정 및 취급세척을 기반으로 퍼지규칙(Fuzzy Rule)을 15개 생성하였다. 인프라데이터셋을 활용하여 제안모델의 인식률 평가에 사용하였으며 인식률 결과는 약 86%의 정확성을 보였다. 퍼지추론 기반 방식의 철도인프라 이상상태 인식모델을 철도분야에 접목시킨다면 기존의 관제기반 방식보다 효율적인 철도인프라 상황인식이 가능할 것으로 판단된다.