• 제목/요약/키워드: 모델 기반 고장 진단

검색결과 83건 처리시간 0.026초

멀티미디어기반 통합 방식 고장 진단 시스템 (A Multimedia-based Hybrid Diagnostic System)

  • 양찬범;양석훈;박영택
    • 지능정보연구
    • /
    • 제5권2호
    • /
    • pp.29-42
    • /
    • 1999
  • 현재 산업의 고도상장과 함께 주기적으로 고장을 진단하여야 하는 기기의 수와 종류도 급속도로 증가하고 있다. 이에 따라 여러 산업 분야에서 고장진단 시스템의 이용이 늘고 있는 추세이다. 이러한 고장진단 시스템은 경험적 고장진단 방식과 모델기반 고장 진단 방식으로 크게 나눌 수 있다. 경험적 고장진단 방식은 전문가가 경험한 사실의 범주에서는 신속하게 고장의 원인을 진단할 수 있지만 전문가가 경험하지 못했던 상황에 대해서는 융통성 있게 진단하지 못한다. 한편 기기의 물리적 기능적 지식을 기반으로 하는 모델기반 고장진단 방식을 변화하는 상황에 적절하게 대처하여 고장의 원인을 진단할 수 있다. 그러나 모델기반 고장진단 방식을 기기의 구조로부터 증상들을 추론하여 원인을 파악하므로 탐색 범위가 넓어 진단속도가 늦다는 단점이 있다. 본 연구에서는 이러한 경험적 고장진단 방식과 기기의 모델기반 고장진단 방식의 장점을 결합하여 신속하고 정확하게 고장진단을 할 수 있는 통합방식 고장진단 시스템을 제시한다. 통합방식 고장진단 시스템은 대상 기기의 진단 상태에 따라서 동적으로 적절한 진단 방식을 선택하기 위해서 블랙보드 추론기관을 이용한다. 또한 각 진단방식이 생성하는 가설 및 사실들을 효과적으로 통합하여 추론하기 위해서 제어지식을 정의하여 적용한다. 그리고 사용자와 진단 시스템간에 원활한 의사소통을 위해서 멀티미디어 기반 인터페이스를 채용하여 통합방식 진단 시스템을 구축한다.

  • PDF

경보처리 기반 진단 시스템 개발 (Development of Diagnosis System Based on Alarm Processing)

  • 정학영;박혁신
    • 지능정보연구
    • /
    • 제4권1호
    • /
    • pp.103-114
    • /
    • 1998
  • 본 논문은 화력발전소 적용을 위한 경보처리 기반 고장진단 전문가 시스템(APDX(Alarm Processing and Diagnosis Expert System)개발에 관하여 논의한다. 본 연구에서 제시된 경보처리 알고리즘은 근본적으로는 경보 인과관계 트리를 사용하고 있으나 최종 원인 경보선택에 있어서는 경보 발생시간과 경보 우선순위 Meta-Rul를 활용한다. 경보처리 모듈에서 처리된 원인경보를 근거로 하여 본 원인경보와 관련된 고장부위를 진단하게 된다. 진단모듈에서는 경보에 관련된 센서들과 고장들 사이의 관계를 정상적으로 모델링하고 센서들의 트랜드를 정성적 해석기로 분석하여 증가, 정상, 감소의 세가지 상태에 대한 신뢰도를 출력한다. 또한 각 경보로부터 고장이 예상되는 고장타입을 센서 천이도로 모델링하여 진단에 활용된다. 최종적으로 추론모듈에서 퍼지(Fuzzy) 추론 알고리즘을 이용하여 모델된 고장 타입과 계산된 고장과의 매칭과정을 통하여 진단을 수행하게 되며, 계산 창 (Window)를 변경하면서 고장을 재 확인하게 된다.

  • PDF

슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘 (Kinematic Model based Predictive Fault Diagnosis Algorithm of Autonomous Vehicles Using Sliding Mode Observer)

  • 오광석;이경수
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.931-940
    • /
    • 2017
  • 본 논문은 슬라이딩 모드 관측기를 이용한 기구학 모델 기반 자율주행 자동차의 예견 고장진단 알고리즘에 관한 연구이다. 자율주행 자동차는 안전한 주행을 위해 신뢰성이 확보된 주행 환경 정보와 차량의 동적상태 정보가 필요하다. 센서 정보의 신뢰성 판단을 위해 본 연구에서는 종방향 기구학 모델기반 슬라이딩모드 관측기를 이용하여 종방향 환경정보와 차량 가속도 정보를 실시간으로 상호 보완적 고장진단이 가능한 예견 알고리즘을 제안하였다. 적용된 슬라이딩 모드 관측기는 종방향 환경정보의 고장신호에도 강건한 입력신호 재건성능을 보이면서 알고리즘의 신뢰성을 확보할 수 있었다. 예견 고장진단 알고리즘의 합리적 성능평가를 위해 네 가지 조건에 대한 실제 주행 데이터 기반 선행차량 추종시나리오를 적용하였다. 성능평가 결과 본 연구에서 제안된 예견 고장진단 알고리즘은 모든 평가조건과 주행 시나리오에 대해 합리적인 고장진단 성능을 보여주었다.

정성적 시뮬레이션에 의한 화력발전소 보일러 프로세스의 고장진단

  • 김응석;오영일;변승현
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.169-169
    • /
    • 1999
  • 최근 산업 플랜트의 공정제어 시스템은 복잡하고 대규모화되어 고장 발생시 경제적 손실과 위험성이 증폭되어 규정된 안정서와 신뢰성 확보가 필수적이라 할 수 있다. 고장검출 및 진단기법은 시스템의 신뢰성을 높이기 위한 효과적인 방안을 연구하는 것으로 현대에 들어서 많은 학자들의 관심을 끌고 있으며 실제 계통에 점차적으로 응용되고 있다. 현재까지 개발된 고장검출 및 진단기법은 사용된 프로세스 모델의 형태, 고장검출 진단 알고리즘에 따라 다양하게 분류 될 수 있으며 일반적으로 사용된 모델에 따라 크게 1) 정량적 모델에 근거한 해석적 기법, 2) 정성적 모델에 근거한 기법, 3) 지식기반 진단 기법으로 구분 할 수 있다. 이중 정량적 모델 기법은 대상계통의 수학적 모델에 근거하여 운전 데이터를 분석함으로서 고장검출 진단을 수행하는 해석적 기법으로서 근본적으로 계통의 정확한 수학적 모델을 요구하므로 불확실성을 포함한 계통 및 비선형성이 강한 계통등에는 적용이 곤란하다. 정성적 모델 및 지식기반 기법은 정량적 진단 기법과는 달리 대상 프로세스에 대한 수학적 모델 대신에 운전자의 경험과 프로세스 변수간의 상호 작용 및 고장의 전파과정, 고장원인과 증상과의 직접적인 관계에 대한 구조적 지식에 근거한 것으로 고장원인에 대한 계통의 동작을 추론 할 수 있으며, 상황 변화에 따른 영향을 예측할 수 있다. 본 논문에서는 정성적 모델 및 지식기반 기법에 근거한 고장검출 및 진단 기술을 화력 발전소 보일로 프로세스에 적용하여 정성적 시뮬레이션에 의한 설비의 고장을 조기에 발견하여 고장 파급으로 인한 발전 정지 및 설비의 손상 확대를 방지하고 고장 발생시 신속한 원인 규명 및 후속 조치관련 정보들을 운전원에게 제공할 목적으로 현재 전력원에서 개발중인 지능형 경보시스템에 대하여 기술하고자 한다.음과 같이 설명하였다. 서로 상반되는 것들이 다음과 같이 설명하였다. 서로 상반되는 것들이 부딛힘이 없이 공존하고 일상의 논리가 무시된다. 부정, 의심이 없고 확실한 것이 없다. 한 대상에 가졌던 생각이 다른 대상에 옮겨간다(displacement). 한 대상이 여러 대상이 갖고 있는 의미를 함축하고 있다(condensation). 시각적인 순서가 무시된다. 마음속의 생각과 외부의 실제적인 일을 구분하지 못한다. 시간 상의 순서가 있다가 없다가 한다. 차례로 일어나야 할 일이 동시에 한꺼번에 일어난다. 대상들이 서로 비슷해지고 동시에 있을 수 없는 대상들이 함께 나타난다. 사고의 정상적인 구조가 와해된다. Matte-Blance는 무의식에서는 여러 독립된 대상들간의 구분을 없애며, 주체와 객체를 하나로 보려는 대칭화(symmetrization)의 경향이 있기 때문에 이런 변화가 생긴다고 하였다. 또 대칭화가 진행되면 무한대의 느낌을 갖게 되어, 전지(moniscience), 전능(omnipotence), 무력감(impotence), 이상화(idealization)가 나타난다. 그러나 무의식에 대칭화만 있는 것은 아니며, 의식의 사고양식인 비대칭도 어느 정도 나타나며, 대칭화의 정도에 따라, 대상들이 잘 구분되어 있는 단계, 의식수준의 감정단계, 집단 내에서의 대칭화 단계, 집단간에서의 대칭화 단계, 구분이 없어지는 단계로 구분하였다.systems. We believe that this taxonomy is a significant contribution because it adds clarity, completeness, and "global perspective" to workflow architectural discussions. The vocabulary suggested here

  • PDF

비선형시스템의 고장진단을 위한 신경회로망 기반 통계적접근법 (Neural Networks-based Statistical Approach for Fault Diagnosis in Nonlinear Systems)

  • 이인수;조원철
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.503-510
    • /
    • 2002
  • 본 논문에서는 비선형시스템에서 발생한 고장을 감지하고 분류하기 위해 신경회로망기반 다중고장모델과 통계적기법에 의한 고장진단 방법을 제안한다. 제안한 알고리듬에서는 시스템의 출력과 신경회로망 공칭모델 출력 사이의 오차가 미리 설정한 문턱 값을 넘으면 고장을 감지한다. 고장이 감지되면 고장분류기에서는 각 신경회로망 고장모델 출력과 시스템 출력 사이의 오차를 이용하여 통계적 기법으로 고장을 분류한다. 컴퓨터 시뮬레이션 결과로부터 제안한 고장진단방법이 비선형 시스템에서의 고장감지 및 분류문제에 잘 적용됨을 알 수 있다.

동적포지모델기반 고장진단 시스템의 설계 (Design on Fult Diagnosis System based on Dynamic Fuzzy Model)

  • 배상욱
    • 한국지능시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.94-102
    • /
    • 2000
  • 본 논문에서는 미지의 비선형 계통에 대한 동적 퍼지모델 기반 고장 검출 및 진단(FDI) 계통 설계 기법을 제시한다. 비선형 계통에 대한 일반적인 모델 기반 FDI 계통에서는 선형화된 모델을 이용하고 있다 이러한 방법은 계통에 대한 정확한 수학적 모델을 요구하게 되어 복잡한 비선형 계통에의 적용시 많은 어려움이 있다 제안되는 FDI계통에서는 미지의 비선형 계통을 다수의 선형 모델을 갖는 동적 퍼지모델 형태로 식별한다. 잔차벡터는 온라인 알고리즘에 의해 추정되는 파라미터의 변동치와 비선형 계통의 동작 영역을 나타내는 퍼지 규칙들의 소속값들로 구성된다. 계통의 고장 검출 및 진단은 잔차벡터와 고장종류간의 관계를 학습한 신경망 분류기에 의해 수행된다. 제안된 FDI 계통 설계법을 이용하여 2 탱크 계통에 대한 FDI 계통을 설계하고 시뮬레이션 연구를 통하여 그 유용성을 보였다.

  • PDF

선박 연료 공급 기기류의 장시간 운전 데이터의 고장 진단에 있어서 XGBoost 및 Conv1D의 예측 정확성 비교 (Comparison of Fault Diagnosis Accuracy Between XGBoost and Conv1D Using Long-Term Operation Data of Ship Fuel Supply Instruments)

  • 김형진;김광식;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.110-110
    • /
    • 2022
  • 본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다

  • PDF

딥러닝 기반 시추장비 이상 예측 및 진단 모델 개발 연구 (A Study on the Development of Anomaly Detection Prediction Model for Deep Learning-Based Drilling Equipment)

  • 한동권;김민수;권순일;최정호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.404-407
    • /
    • 2021
  • 석유개발 현장에서 시추장비의 고장으로 인한 장비교체 및 시추시간 증가는 막대한 비용소모를 발생시킨다. 본 논문은 딥러닝 기반의 시추장비 중 드릴비트의 동력을 구동시키는 디젤엔진의 고장 요소를 분류하고 이 요소에 따른 고장여부를 판별하는 딥러닝 기반의 이상 예측 및 진단 모델을 개발하였다. 또한 제안한 모델의 우수성을 확인하기 위해 로지스틱 회귀분석 분류모델과의 예측성능 비교분석도 수행하였다.

퍼지추론 지식베이스를 활용한 고장진단 전문가시스템 모델 연구 (Development Failure Diagnosis Expert System Model using the Fuzzy Inference Knowledge-based-)

  • 박주식;강경식
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.133-146
    • /
    • 1999
  • 오늘날의 산업용 로봇, CNC 공작기계 및 여러 산업설비들은 시스템간에 관계가 복잡하게 연결되어 높은 신뢰성(reliability)을 달성하여 왔다. 그러나 가동시 발생하는 결과의 고장 가능성은 적은 반면에, 고장 발생의 파급 효과는 매우 높은 것으로 나타났다. 따라서 복잡한 구조의 산업설비들에 대한 안전진단 결과들을 적절하게 분석하고 관리할 필요성이 크게 대두되고 있다. 이러한 안전진단 작업은 여러 가지 정량적ㆍ정성적인 방법들을 포함하는 전형적인 분석방법이 필요하다. 최근에는 고장탐색, 진단처리 작업 및 신뢰성 분석 작업에 지식기반(knowledge-based)을 기초로한 퍼지 전문가 시스템을 적용하고자 하는 시도가 많이 이루어지고 있다. 안전진단 분석에 관한 일반화된 지식은 이들 후속 단계들에서 상당히 효율적일 수 있다. 그러나 이러한 연구를 수행하기에는 지금까지 상대적으로 열악한 계산 도구들을 이용하였기 때문에 안전진단 분석을 행하기에는 한계가 있었다. 그러나 오늘날 컴퓨터를 이용하여 위의 여러 단계들의 수행과정에 안전진단 분석을 행할 수 있는 적절한 방법으로써, 지식-기반(knowledge-base) 전문가 시스템들을 이용하는 방법을 연구하고 있다. 이에 본 연구는 시스템의 설계단계 뿐만 아니라, 시스템의 가동ㆍ유지ㆍ보수ㆍ수리시에도 비전문가가 고장안전진단을 수행할 수 있도록 하는데 목표를 두었다.

  • PDF