To raise the industrial competitiveness in the field of ship-building, it is crucially important that the yard should use production facilities and working space effectively. Among the related works, the management of tremendous blocks' number, the limited area of assembly shops and inefficient personnel and facility management still need to be improved in terms of being exposed to a lot of problems. To settle down these conundrums, the various strategies of block arrangement on the assembly floors have been recently presented and in the results, have increasingly began to be utilized in practice. However, it is a wonder that the sampled or approximated block shapes which usually are standardized projections or the geometrically convex contour only have been prevailed until now. In this study, all parts including the panel, stiffeners, outer shells, and all kinds of outfitting equipment are first extracted using the Volume Primitive plug-in module from the ship customized CAD system and then, the presented system constructs a simpler and more compact ship data structure and finally generates the novel projected contours for the block arrangement system using the adaptive concave hull algorithm.
FOG(fiber optic gyroscope :광섬유 자이로스코프)는 소형 경량화, 신속한 가동, 저 전력 소모 및 저렴한 가격으로 실현 가능하므로 자이로콤파스시스템에서의 선호도가 높아지고 있다. 본 논문에서는 FOG를 기반으로 하며, 자이로콤파스시스템에 적용할 수 있는 디지털 진북추종 방식을 제안한다. FOG의 earth signal의 해석모델을 분석하고, lock-in증폭기를 통과한 earth signal을 모델링 한다. 두 개의 lock-in증폭기 출력신호를 이용한 진북추종 알고리즘을 개발하고, 이 알고리즘에 의한 디지털 진북추종 방식을 제안한다. 제안한 방식의 성능을 증명하기 위해 컴퓨터시뮬레이션 결과를 포함한다.
여러 임베디드 시스템 운영체제 중에서 임베디드 리눅스는 다양한 오픈 소스 S/W를 사용할 수 있고, 다양한 임베디드 시스템에 이식할 수 있다는 장점 때문에 널리 사용되고 있다. 하지만, 임베디드 리눅스는 리눅스의 기본 접근제어 메커니즘인 임의적 접근제어(Discretionary Access Control, DAC) 기법을 그대로 사용하고 있어서 사용자의 Identity가 도용 당하거나 Trojan Horse와 같은 프로그램이 설치될 경우, 접근제어가 효력을 상실하게 된다는 결점을 가지고 있다. 더욱 문제가 되는 것은 DAC의 특성상, 프로세스가 필요 이상의 과도한 특권을 가지고 실행되며, 그 결과 잘못된 프로세스가 그 자신과 관계 없는 프로그램이나 운영체제의 커널마저 손상시키는 결과를 낳을 수 있다는 것이다. 이에 따라 보다 강건한 접근제어 메커니즘에 대한 연구의 필요성이 대두되고 있다. 본 논문에서는 임베디드 리눅스 운영체제의 접근제어 메커니즘이 가지고 있는 보안적 결점에 대해서 알아보고, 이 결점을 보완하기 위해 타입 강제(Type Enforcement, TE) 기법을 사용함으로써, 임베디드 시스템에 적합하면서 강력한 접근제어를 제공할 수 있는 안전한 임베디드 리눅스 시스템에 대한 설계 모델을 보여주고자 한다.
본 논문은 고성능의 서버 없이 안드로이드 스마트폰 단독으로 동작할 수 있도록 경량화 딥러닝 모델을 사용하여 구현한 자동차 번호판 인식 시스템을 제안한다. 자동차 번호판 인식시스템은 [번호판검출]-[문자영역 분할]-[문자인식]으로 3단계의 과정으로 구성되며, 번호판검출은 SSD-Mobilenet, 문자영역 분할은 ResNet에 localization을 추가하여 사용하였고 문자인식은 ResNet을 이용하여 구현하였다. 테스트한 기기는 삼성 갤럭시 S7, LG Q9이며 정확도는 약 85.3%, 실행속도는 약 1.1초가 소요된다.
In this paper, we propose a low-cost, low-power embedded environment-based deep learning lightweight model for input images to recognize laundry management codes. Laundry franchise companies mainly use barcode recognition-based systems to record laundry consignee information and laundry information for laundry collection management. Conventional laundry collection management systems using barcodes require barcode printing costs, and due to barcode damage and contamination, it is necessary to improve the cost of reprinting the barcode book in its entirety of 1 billion won annually. It is also difficult to do. Recognition performance is improved by applying the VGG model with 7 layers, which is a reduced-transformation of the VGGNet model for number recognition. As a result of the numerical recognition experiment of service parts drawings, the proposed method obtained a significantly improved result over the conventional method with an F1-Score of 0.95.
This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.
In this study, we proposed a method for hyperparameter optimization in the building and training of a deep learning model designed to process point cloud data collected by a millimeter-wave radar system. The primary aim of this study is to facilitate the deployment of a baseline model in resource-constrained IoT devices. We evaluated a RadHAR baseline deep learning model trained on a public dataset composed of point clouds representing five distinct human activities. Additionally, we introduced a coarse-to-fine hyperparameter optimization procedure, showing substantial potential to enhance model efficiency without compromising predictive performance. Experimental results show the feasibility of significantly reducing model size without adversely impacting performance. Specifically, the optimized model demonstrated a 3.3% improvement in classification accuracy despite a 16.8% reduction in number of parameters compared th the baseline model. In conclusion, this research offers valuable insights for the development of deep learning models for resource-constrained IoT devices, underscoring the potential of hyperparameter optimization and model size reduction strategies. This work contributes to enhancing the practicality and usability of deep learning models in real-world environments, where high levels of accuracy and efficiency in data processing and classification tasks are required.
본 논문에서는 차량의 개문사고를 예방하기 위한 목적으로 FMCW 레이다 센서를 활용하여 물체를 감지하고 분류 가능한 시스템 설계 및 구현 결과가 제시된다. 제안된 시스템은 Raspberry-Pi 기반 임베디드시스템과 FPGA 가속기에 기반하여 구현되었으며, 해당 시스템은 레이다 센서 신호처리 과정과 물체를 자전거, 자동차, 사람으로 분류하는 딥러닝 과정을 수행한다. CNN 알고리즘은 연산량과 메모리 사용량이 크기 때문에 임베디드시스템에 적합하지 않다. 이를 해결하기 위해 임베디드시스템에 적합한 경량화된 딥러닝 모델인 BNN을 FPGA 상에 구현한 뒤 결과를 검증하였고, 90.33%의 분류 정확도와 20ms의 수행시간을 확인하였다.
본 연구는 Layer Importance Evaluation을 통해 도출된 화재 감지에 최적화된 딥러닝 아키텍처를 제안한다. 기존의 합성곱 신경망(Convolutional Neural Network, CNN) 기반 화재 감지 시스템의 불필요한 복잡성과 연산을 초래하는 문제점을 해결하기 위해, Layer Importance Evaluation 기법을 통해 가중치 및 활성화 값에 근거한 모델의 내부 레이어의 동작을 분석하고, 화재 감지에 기여도가 높은 레이어를 식별한 뒤, 식별한 레이어만으로 모델을 재구성하여, 기존 모델과의 성능 지표를 비교 분석하였다. Xception, VGG19, ResNet, EfficientNetB5 등 네 가지 전이 학습 모델을 사용하여 화재 데이터를 학습시킨 후, Layer Importance Evaluation기법을 적용하여 각 레이어의 가중치와 활성화 값을 분석한 뒤 기여도가 가장 높은 상위 랭크 레이어들을 선별하여 새로운 모델을 구축하였다. 연구 결과, 구현된 아키텍처는 기존 모델 대비 약 80% 가량 경량화 된 파라미터로도 동등한 성능을 유지하며, 약 3~5배가량 신속한 학습 속도를 가지면서도 기존의 복잡한 전이학습 모델에 비해 정확도, 손실, 혼동행렬 지표에서 동등한 성능을 출력함으로써, 화재 감시 장비의 효율성을 높이는 데 기여할 수 있음을 확인하였다.
최근 경량화 비디오 부호화를 위함 분산 비디오 부호화 기술 (DVC: Distributed Video Coding)에 대한 연구가 활발히 이루어지고 있으며, Wyner-Ziv 부호화 기술은 이의 대표적인 기술로써 각광받고 있다. Wyner-Ziv (WZ) 부호화기는, 영상을, 기존의 인트라 부호화기를 이용하는 키 (Key) 프레임과 WZ 부호화를 하는 WZ 프레임으로 나누어 독립적으로 부호화 한다. WZ 복호화기로 전송된 키 프레임은 복원된 뒤 키 프레임 사이의 WZ 프레임을 추정하는데 사용되며 추정된 WZ 프레임을 보조정보 (Side Information)라고 한다. 보조정보는 WZ 프레임에 대한 정보가 없는 상태에서 추정되므로 필연적으로 WZ 프레임과 다르며 WZ 복호화기에서는 보조정보와 WZ 프레임과의 차이를 가상의 채널 잡음으로 간주한다. WZ 복호화 과정은 가상의 채널잡음을 WZ 복호화기 내에 존재하는 채널코드를 이용하여 제거함으로써 이루어지므로 채널 정보를 정확히 아는 것은 채널코드의 에러정정능력에 큰 영향을 미친다. WZ 복호화기에서는 추정된 WZ 영상만이 존재하므로 정확한 잡음의 양을 알 수 없으며, 일반적으로 선형 움직임에 근거한 키 프레임 간의 차를 하나의 예측 수단으로 사용한다. 또한 이와 같이 예측이 갖는 불확실성으로 채널코드의 효율이 저하되는 것을 막기 위하여 주변의 잡음과 비교를 통한 잘못된 잡음을 정정하는 방법도 제안되었다. 하지만 이런 방법들이 모든 프레임이나 비트 플레인에 존재하는 잡음을 제대로 측정한다고 할 수는 없다. 따라서 본 논문에서는 여러 개의 후보 잡음 모델을 생성한 후, 복호화 과정에서 가장 효율적인 모델을 선택하는 방법을 제안한다. 제안 방법에 대한 실험결과는 최대 0.8 dB의 PSNR이득을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.