• 제목/요약/키워드: 모델 경량화

검색결과 312건 처리시간 0.025초

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.23-32
    • /
    • 2024
  • NVS는 여러 각도와 위치에서 수집한 이미지를 이용해 3차원 공간을 재현하는 연구 분야로, 증강현실, 가상현실, 자율주행, 로봇 네비게이션 등에서 중요성이 커지고 있다. 최근 주목받는 3D-GS 방법론은 기존 NeRF 보다 고품질 장면 생성, 빠른 학습 시간, 실시간 렌더링이 가능하지만, Gaussian points의 밀도 조정 과정에서 전체 Gaussian points 수의 증가로 메모리 소모량 상승과 렌더링 속도가 저하되는 문제가 있다. 이를 개선하기 위해 본 논문에서는 불필요한 Gaussian points를 제거하여 메모리 효율성을 높이는 Gaussian blending 기법과 Gaussian points 감소로 인한 표현력 손실을 최소화하는 깊이 정보 반영 손실 함수를 제안하여 모델의 성능을 보완한다. 실험 결과, Tanks & Temples 벤치마크 데이터셋에서 성능을 유지하면서 Gaussian points 수를 최대 4% 감소시키는 효과를 확인하였다. 따라서 본 논문에서 제안한 방법론은 3D-GS 모델의 경량화 가능성을 실험적으로 증명하였다.

건물 시설물 관리 관점에서 GIS기반 대용량 BIM 형상 객체 표현을 위한 경량 BIM 형상 포맷 구조 개발에 관한 연구 (A Study on the Lightweight BIM Shape Format(LBSF) Structure Development to Represent the Large Volume BIM Geometry Objects based on GIS as the Viewpoint of the Building Facility Management)

  • 강태욱;홍창희
    • Spatial Information Research
    • /
    • 제21권3호
    • /
    • pp.79-87
    • /
    • 2013
  • 본 연구에서는 GIS기반에서 대용량 BIM 형상 객체를 효과적으로 표현하기 위한 경량 형상 포맷 구조 개발에 초점을 맞춘다. 최근 건물관리 유스케이스 관점에서 GIS기반에서 수많은 BIM 객체를 관리하고 필요한 정보를 표현하고자 하는 연구가 진행되고 있다. 이를 효과적으로 구현하기 위해서는 IFC와 같은 BIM정보표준모델을 도시차원에서 GIS상에 효과적으로 표현해야 한다. 이를 위해서는 BIM 정보를 포함한 경량화 된 BIM형상 가시화 방법과 포맷 구조를 제안하고 파일럿 테스트를 위해 프로토 타입을 구현해 본다. 파일럿 프로세스에서는 연구를 통해 도출된 설계 내용에 따라 3개 지역의 모델 데이터에 대해 일반적인 IFC파일과 경량BIM형상 포맷을 각각 구성한 후, 데이터 용량, 화면 로딩 시간 등의 성능을 비교하였다.

다중 애플리케이션 처리를 위한 경량 인공지능 하드웨어 기반 통합 프레임워크 연구 (A Study of Unified Framework with Light Weight Artificial Intelligence Hardware for Broad range of Applications)

  • 전석훈;이재학;한지수;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.969-976
    • /
    • 2019
  • 경량 인공지능 하드웨어는 다양한 문제의 해결을 위해 멀티모달 센서 데이터를 입력받아 특징 선택, 추출, 차원축소, 정규화 과정을 수행한 후 인공지능 엔진으로 예측 결과를 도출한다. 다양한 애플리케이션에서 높은 성능을 달성하기 위해서는 이러한 경량 인공지능 하드웨어의 초 매개변수와 전체적인 전처리 시스템의 구성을 데이터에 맞춰 최적화할 필요가 있다. 본 논문에서는 경량 인공지능 하드웨어의 효율적인 제어 및 최적화를 위한 통합 프레임워크를 제안한다. 제안된 통합 프레임워크는 데이터 전처리 및 뉴로모픽 기반 경량 인공지능 엔진을 유연하게 재구성할 수 있으며, 최적의 모델을 생성할 수 있다. 기능검증을 위해 손글씨 이미지 데이터 세트와 관성 센서 데이터 기반의 낙상 검출 데이터 세트를 사용하였으며, 실험 결과 제안하는 통합 프레임워크가 각각의 데이터 세트에서 90% 이상의 정확도를 갖는 최적의 모델을 생성함을 확인하였다.

의료 영상에 최적화된 딥러닝 모델의 개발 (Development of an Optimized Deep Learning Model for Medical Imaging)

  • 김영재;김광기
    • 대한영상의학회지
    • /
    • 제81권6호
    • /
    • pp.1274-1289
    • /
    • 2020
  • 최근, 의료 영상 분야에서 딥러닝은 가장 활발하게 연구되고 있는 기술 중 하나이다. 충분한 데이터와 최신의 딥러닝 알고리즘은 딥러닝 모델의 개발에 중요한 요소이다. 하지만 일반화된 최적의 딥러닝 모델을 개발하기 위해서는 데이터의 양과 최신의 딥러닝 알고리즘 외에도 많은 것을 고려해야 한다. 데이터 수집부터 가공, 전처리, 모델의 학습 및 검증, 경량화까지 모든 과정이 딥러닝 모델의 성능에 영향을 미칠 수 있기 때문이다. 본 종설에서는 의료 영상에 최적화된 딥러닝 모델을 위해 개발 과정 각각에서 고려해야 할 중요한 요소들을 살펴보고자 한다.

냉각 성능 향상을 위한 고속철도 제동 디스크 허브의 해석 연구 (Analytical Study of High Speed Railway Braking Disc-hub for Enhancement of Cooling Performance)

  • 이용우;김장훈
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.199-207
    • /
    • 2021
  • 본 연구는 한국형고속철도(KTX)의 제동장치의 국산화를 통한 성능 개선을 위한 목적으로 수행되었다. 본 연구에서 기존 수입에 의존하고 있는 고속철도용 제동 디스크 허브를 국산화하기 위하여 유한요소 해석을 통해 성능을 분석하고 제동 시험결과와 상관도 분석을 통해 모델의 검증을 수행하였다. 또한, 제동시 발생할 수 있는 기계적인 특성을 검토하기 위하여 마찰열에 의한 열전달-열응력 해석, 고유진동해석 및 강도해석을 수행하였다. 디스크 허브 국산화 신규 모델의 개발을 위해 형상에 따른 설계 인자를 도출하고 파라미터 해석을 수행하여 방열성능을 향상시키고 경량화를 위한 최적 사양을 도출하고자 하였다. 개발 모델을 기존 모델과 비교한 결과 기존 모델 대비 제동시 발생하는 허브의 최고 온도가 낮아졌으며, 냉각 효율이 향상되었음 확인할 수 있었다. 또한, 고유진동수 및 강도 특성 또한 동등 수준 이상의 성능을 확보한 설계임을 확인하였다. 본 연구 결과는 철도차량 및 수송기기 분야의 제동 디스크 시스템 개발에 활용될 수 있을 것으로 기대된다.

비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축 (Compression of DNN Integer Weight using Video Encoder)

  • 김승환;류은석
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.778-789
    • /
    • 2021
  • 최근 다양한 분야에서 뛰어난 성능을 나타내는 Convolutional Neural Network(CNN)모델을 모바일 기기에서 사용하기 위한 다양한 연구가 진행되고 있다. 기존의 CNN 모델은 모바일 장비에서 사용하기에는 가중치의 크기가 크고 연산복잡도가 높다는 문제점이 있다. 이를 해결하기 위해 가중치의 표현 비트를 낮추는 가중치 양자화를 포함한 여러 경량화 방법들이 등장하였다. 많은 방법들이 다양한 모델에서 적은 정확도 손실과 높은 압축률을 나타냈지만, 대부분의 압축 모델들은 정확도 손실을 복구하기 위한 재학습 과정을 포함시켰다. 재학습 과정은 압축된 모델의 정확도 손실을 최소화하지만 많은 시간과 데이터를 필요로 하는 작업이다. Weight Quantization이후 각 층의 가중치는 정수형 행렬로 나타나는데 이는 이미지의 형태와 유사하다. 본 논문에서는 Weight Quantization이후 각 층의 정수 가중치 행렬을 이미지의 형태로 비디오 코덱을 사용하여 압축하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 ImageNet과 Places365 데이터 셋으로 학습된 VGG16, Resnet50, Resnet18모델에 실험을 진행하였다. 그 결과 다양한 모델에서 2%이하의 정확도 손실과 높은 압축 효율을 달성했다. 또한, 재학습 과정을 제외한 압축방법인 No Fine-tuning Pruning(NFP)와 ThiNet과의 성능비교 결과 2배 이상의 압축효율이 있음을 검증했다.

딥 러닝 기반의 이기종 무선 신호 구분을 위한 데이터 수집 효율화 기법 (An Efficient Data Collection Method for Deep Learning-based Wireless Signal Identification in Unlicensed Spectrum)

  • 최재혁
    • 전기전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.62-66
    • /
    • 2022
  • 최근 데이터 기반의 딥러닝 기술을 적용하여 비면허 대역의 다양한 통신 신호를 분류하는 연구가 활발히 수행되고 있다. 하지만, 복잡한 신경망 모델 사용을 기반으로 이뤄진 이러한 접근법은 높은 연산 능력을 필요로 하게 되어, 자원 제약적인 무선 인터페이스 및 사물인터넷(Internet of Things) 장비에서는 사용이 제약된다. 본 연구에서는 비면허 대역의 무선 이기종 기술을 인지하기 위한 데이터 기반의 접근 방법을 살펴보고, 신호의 특징 추출 및 데이터화의 효율화 문제를 다룬다. 구체적으로, 비면허 대역의 다른 종류의 무선 통신 기술을 구분하기 위해 수신 신호 강도 측정을 기반으로 한 시계열 데이터를 이용해 합성곱 신경망(Convolutional Neural Network, CNN) 모델을 학습시켜 신호를 분류하는 방법을 살펴본다. 이 과정에서 동일한 구조의 신경망 모델의 경량화를 위한 효율적 신호의 시계열 데이터 정보 수집시 주파수 대역의 특징을 함께 특징화하는 방법을 제안하고, 그 효과를 평가한다. Bluetooth 호환의 Ubertooth 장비를 이용한 실측 기반의 실험 결과는 제안된 샘플링 기법이 동일한 신경망에 대해서 10% 수준의 샘플링 데이터 이용만으로도 동일한 정확도를 유지함을 보여준다.

저전력 장치를 위한 자원 효율적 객체 검출기 (Resource-Efficient Object Detector for Low-Power Devices)

  • 악세이 쿠마 샤마;김경기
    • 반도체공학회 논문지
    • /
    • 제2권1호
    • /
    • pp.17-20
    • /
    • 2024
  • 본 논문은 전통적인 자원 집약적인 컴퓨터 비전 모델의 한계를 해결하기 위해 저전력 엣지 장치에 최적화된 새로운 경량 객체 검출 모델을 제안합니다. 제안된 검출기는 Single Shot Detector (SSD)에 기반하여 소형이면서도 견고한 네트워크를 설계하였고, 작은 객체를 효율적으로 감지하는 데 있어 효율성을 크게 향상시키도록 모델을 구성하였다. 이 모델은 주로 두 가지 구성요소로 구성되어 있습니다: Depthwise 와 Pointwise Convolution 레이어를 사용하여 효율적인 특징 추출을 위한 Light_Block, 그리고 작은 객체의 향상된 감지를 위한 Enhancer_Block 으로 나누었다. 우리의 모델은 300x480 의 이미지 크기를 가진 Udacity 주석이 달린 데이터셋에서 처음부터 훈련되었으며, 사전 훈련된 분류 가중치의 필요성을 제거하였다. 약 0.43M 의 파라미터로 5.5MB 만의 무게를 가진 우리의 검출기는 평균 정밀도 (mAP) 27.7%와 140 FPS 의 처리 속도를 달성하여, 정밀도와 효율성 모두에서 기존 모델을 능가하였다. 따라서, 본 논문은 추론의 정확성을 손상시키지 않으면서 엣지 장치를 위한 객체 검출에서의 효과적인 경량화를 보여주고 있다.

CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서 (CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective)

  • 윤호;김창현;천민아;박호민;남궁영;최민석;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Prompting 기반 매개변수 효율적인 Few-Shot 학습 연구 (Parameter-Efficient Prompting for Few-Shot Learning)

  • 박은환;;서대룡;전동현;강인호;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.343-347
    • /
    • 2022
  • 최근 자연어처리 분야에서는 BERT, RoBERTa, 그리고 BART와 같은 사전 학습된 언어 모델 (Pre-trained Language Models, PLM) 기반 미세 조정 학습을 통하여 여러 하위 과업에서 좋은 성능을 거두고 있다. 이는 사전 학습된 언어 모델 및 데이터 집합의 크기, 그리고 모델 구성의 중요성을 보여주며 대규모 사전 학습된 언어 모델이 각광받는 계기가 되었다. 하지만, 거대한 모델의 크기로 인하여 실제 산업에서 쉽게 쓰이기 힘들다는 단점이 명백히 존재함에 따라 최근 매개변수 효율적인 미세 조정 및 Few-Shot 학습 연구가 많은 주목을 받고 있다. 본 논문은 Prompt tuning, Prefix tuning와 프롬프트 기반 미세 조정 (Prompt-based fine-tuning)을 결합한 Few-Shot 학습 연구를 제안한다. 제안한 방법은 미세 조정 ←→ 사전 학습 간의 지식 격차를 줄일 뿐만 아니라 기존의 일반적인 미세 조정 기반 Few-Shot 학습 성능보다 크게 향상됨을 보인다.

  • PDF