본 논문에서는 다수 객체 모델을 통해 잘못된 객체 모델 갱신의 영향을 줄이고 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 객체 모델 집합은 다수의 객체 모델과 대응하는 가중치들로 정의된다. 각 델과의 유사도 가중 합을 고려 하여 객체 위치를 추정하고, 각 모델의 추정 신뢰도를 계산하여 가중치를 갱신한다. 실험 결과를 통해 제안하는 기법이 오클루젼, 밝기 변화로 인하여 객체 외형이 왜곡되었을 때 추적 성능을 크게 개선함을 보이고 기존 기법들보다 더 정확한 추적 결과를 제공함을 확인한다.
본 논문은 최근 가장 이슈화 되고 있는 스미싱 위협의 방지에 대해 다루며, 단순히 스미싱 방지뿐만 아니라 탐지율 향상, 오탐률 감소를 위해 새로운 모델을 제안한다. 첫 번째 모델은 문자메시지 송/수신 시 특정 인증 값을 첨부/확인하여 정상 기관 인증을 수행하는 모델이며, 두 번째 모델은 문자메시지에 첨부된 URL을 사용자가 메시지 수신을 확인하기 전에 사전 검증하여 악성 유무를 판별하는 모델이다. 두 모델의 기본 동작 방식 제안과 설계를 통해 장점과 단점을 언급한다.
본 논문에서는 빠르게 회전하는 공에 대한 바운싱 모델을 제시한다. 제안하는 바운싱 모델은 충격량을 기반으로 공의 회전력, 지면의 탄성 및 마찰력을 고려한다. 제안된 모델의 정확도를 측정하기 위해 그린, 페어웨이 및 러프 지형에서 공의 궤적을 촬영하고, 영상으로부터 공의 실제 궤적을 추출하여 비교한다. 시뮬레이션 모델은 실제 궤적을 기반으로 튜닝함으로써 정확도를 향상시킨다. 본 바운싱 모델은 실감형 스포츠 게임에서 보다 사실감을 높일 수 있다.
분산 침입 탐지시스템은 감시되는 호스트 수에 비례하여 데이터 분석이 다수의 위치에서 수행되는 시스템이다. 따라서, 침입 탐지를 위하여 구성된 컴포넌트 사이의 효율적인 정보 분배가 중요한 문제이며, 통신 메커니즘은 신뢰성, 효율성, 안전성 그리고 확장성이 요구된다. 분산 침입 탐지 시스템의 통신 형태를 나타내는 통신모델 중에서, 높은 확장성 때문에 고려되고 있는 모델로 피어 대 피어 통신 모델이 있다. 이 모델은 특정한 형태의 관심전파와 데이터 전달 방법에 따라 다시 계층적 구조와 직접 연결로 분류할 수 있다. 본 논문에서는, 분산 침입탐지에서 침입 탐지정보를 전달하는 두 가지 방법에 대하여 분석하고, 통신 메커니즘의 성능을 향상시키는 방안을 제시하고자 한다.
음성 인식 시스템은 다양하게 변화하는 환경 잡음에 빠르게 적응할 수 없어서 인식 성능을 저하시키는 요인이 된다. 본 논문에서는 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인하게 하는 방법으로 HMM 학습 모델을 구성하는 방법을 제안하였으며, 변화하는 반향 잡음에 적응하도록 HMM 학습 모델을 구성하여 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 3.1dB이 향상되었고 인식률은 3.9% 향상되었다.
본 논문에서는 연속음성인식에 사용되는 언어모델이 학습 코퍼스에서 나타나지 않는 문맥에 대하여 신뢰할만한 확률을 생성할 수 있도록 하는 방안으로 다중 단어 카테고리 결정방법을 제안하였다. 제안된 다중 단어 카테고리 결정 방법은 기존의 카테고리 기반 언어모델에서의 미관측 문맥에 대한 모델링 능력을 유지하면서 동형이의어에 대한 확률의 과도한 일반화를 방지한다. 제안된 방법을 이용한 언어모델의 성능을 측정하기 위해 미관측 문맥이 $31\%$ 포함된 인식문장에 대한 N-Best rescoring을 수행한 결과 word accuracy는 1-Best문장에 대해서 $3.2\%$의 향상을 얻었고 기존의 카테고리기반 언어모델을 적용한 결과에 비하여 $0.8\%$의 향상을 얻을 수 있었다.
본 논문에서는 전류품질 향상을 위해 다양한 전압벡터를 인가하는 모델 예측 제어 기반의 공간 벡터 변조 기법을 제안한다. 기존의 모델 예측 제어 기반의 전류제어는 제어주기 동안 하나의 스위치 상태가 인가되어 낮은 스위칭 횟수로 인해 높은 전류품질을 기대하기 힘들다. 이러한 이유로 본 논문에서 제안하는 방법은 공간 벡터도 상에서 전압벡터의 세분화를 통해 스위칭 횟수를 늘려 전류품질을 높일 수 있다. 또한 계통 위상각을 이용해 필요한 전압벡터만을 사용하여 비용함수를 계산하기 때문에 제어주기 동안 계산시간을 보장할 수 있다. 시뮬레이션을 통해 제안한 방법이 기존의 모델 예측 제어 기법의 전류제어 기법보다 향상된 전류품질을 보장하는 것을 검증하였다.
본 논문은 음성 및 음악을 위한 새로운 4kbps 다중 모드 하모닉 변환 여기 부호화 방법을 제안한다. 제안된 부호화방법은 음성/음악 분류기에 의해 분류된 신호를 각각 하모닉-잡음 여기모델과 MLT 여기모델로 부호화한다. 하모닉-잡음 여기모델에서는 전이구간과 유/무성음 혼합신호의 모델링오차 개선을 위해 MP(Matching Pursuit)방법과 혼합된 잡음스펙트럴을 표현하기 위한 캡스트럽 LPC 잡음 모델, 빠른 정현파 합성법을 제안한다. 음악에서는 비트할당 효율을 높이기위한 LP 적응 피크 분석을 적용한 MLT(Modulated Lapped Transform) 부호화 방법을 제안한다. 제안된 방법을 적용한 4kbps 음성부호화 방법은 전이구간에서의 향상된 모델링 구조를 보여주었으며, 주관적음질 평가 8kbps QCELP 보다 MOS 0.2 정도 향상된 결과를 얻었다.
본 논문에서는 전화망 환경에서 음성 인식 성능을 개선하기 위한 특징 벡터 추출 단계에서의 처리 방법들을 연구하였다. 먼저, 고립 단어 인식 시스템에서 채널 왜곡 보상 방 법들을 단어 모델과 문맥 독립 음소 모델에 대하여 인식 실험을 하였다. 켑스트럼 평균 차 감법, RASTA 처리, 켑스트럼-시간 행렬을 실험하였으며, 인식 모델에 따른 각 알고리즘의 성능을 비교하였다. 둘째로, 문맥 독립 음소 모델을 이용한 인식 시스템의 성능 향상을 위하 여 정적 특징 벡터에 대하여 주성분 분석 방법(principal component analysis)과 선형 판별 분석(linear discriminant analysis)과 같은 선형 변환 방법을 적용하여 분별력이 높은 벡터 공간으로 변환함으로써 인식 성능을 향상시켰다. 또한 선형 변환 방법을 켑스트럼 평균 차 감법과 결합하여 더욱 뛰어난 성능을 보여주었다.
본 연구에서는 개체명 인식의 성능을 향상시키기 위해, 가중 투표 방법을 이용하여 개체명 인식 모델을 앙상블 하는 방법을 제안한다. 각 모델은 Conditional Random Fields의 변형 알고리즘을 사용하여 학습하고, 모델들의 가중치는 다목적 함수 최적화 기법인 NSGA-II 알고리즘으로 학습한다. 실험 결과 제안 시스템은 $F_1Score$ 기준으로 87.62%의 성능을 보여, 단독 모델 중 가장 높은 성능을 보인 방법보다 2.15%p 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.