• 제목/요약/키워드: 모델향상

검색결과 7,304건 처리시간 0.038초

다국어 음성인식을 위한 언어별 출력 계층 구조 Wav2Vec2.0 (Language Specific CTC Projection Layers on Wav2Vec2.0 for Multilingual ASR)

  • 이원준;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.414-418
    • /
    • 2021
  • 다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.

  • PDF

숫자의 대소관계 파악을 위한 Explicit Feature Extraction(EFE) Reasoner 모델 (Explicit Feature Extraction(EFE) Reasoner: A model for Understanding the Relationship between Numbers by Size)

  • 안지수;민태원;권가진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.23-26
    • /
    • 2023
  • 본 논문에서는 서술형 수학 문제 풀이 모델의 숫자 대소관계 파악을 위한 명시적 자질추출방식 Explicit Feature Extraction(EFE) Reasoner 모델을 제안한다. 서술형 수학 문제는 자연현상이나 일상에서 벌어지는 사건을 수학적으로 기술한 문제이다. 서술형 수학 문제 풀이를 위해서는 인공지능 모델이 문장에 함축된 논리를 파악하여 수식 또는 답을 도출해야 한다. 때문에 서술형 수학 문제 데이터셋은 인공지능 모델의 언어 이해 및 추론 능력을 평가하는 지표로 활용되고 있다. 기존 연구에서는 문제를 이해할 때 숫자의 대소관계를 파악하지 않고 문제에 등장하는 변수의 논리적인 관계만을 사용하여 수식을 도출한다는 한계점이 존재했다. 본 논문에서는 자연어 이해계열 모델 중 SVAMP 데이터셋에서 가장 높은 성능을 내고 있는 Deductive-Reasoner 모델에 숫자의 대소관계를 파악할 수 있는 방법론인 EFE 를 적용했을 때 RoBERTa-base 에서 1.1%, RoBERTa-large 에서 2.8%의 성능 향상을 얻었다. 이 결과를 통해 자연어 이해 모델이 숫자의 대소관계를 이해하는 것이 정답률 향상에 기여할 수 있음을 확인한다.

열전달 향상 장치에 따른 평판형 태양열 집열기의 압력강하 및 열전달 특성 (Pressure drop and heat transfer characteristics of a flat-plate solar collector with heat transfer enhancement device)

  • 안성후;신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.453-460
    • /
    • 2013
  • 평판형 태양열 집열기의 효율을 높이기 위한 방법으로 열전달 향상 장치의 삽입, 표면 거칠기의 변화 등 다양한 방법들이 알려져 있다. 본 연구는 실험을 통해 다양한 열전달 향상 장치를 제작하고 이를 덕트에 삽입해 실험을 수행하였다. 실험은 기본적으로 덕트 윗 평판에 일정한 열유속을 가하였고, 삽입된 모델은 매끈한 덕트 형상(Base case)과 Chamfered rib $10^{\circ}$, Chamfered rib $20^{\circ}$, Rib & Groove, Rib & Dimple 모델이다. 실험은 Reynolds 수가 2,300~22,000의 범위에서 이루어졌으며 이는 난류영역에 해당한다. 열전달 향상 장치를 삽입하면 면적의 증가와 2차 유동으로 인하여 열전달이 향상되고, Reynolds 수가 증가할수록 열전달이 향상되었으며 압력강하도 증가하였다. 열전달 측면에서는 Rib & Dimple 모델이 열전달 향상 효과가 가장 좋았으며, 압력강하는 Chamfered rib $10^{\circ}$ 모델이 가장 낮았으며, 성능계수 측면에서도 Chamfered rib $10^{\circ}$ 모델이 가장 높은 것으로 나타났다.

잡음 환경에 효과적인 마스크 기반 음성 향상을 위한 손실함수 조합에 관한 연구 (A study on combination of loss functions for effective mask-based speech enhancement in noisy environments)

  • 정재희;김우일
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.234-240
    • /
    • 2021
  • 본 논문에서는 잡음 환경에서 효과적인 음성 인식을 위해 마스크 기반의 음성 향상 기법을 개선한다. 마스크 기반의 음성 향상 기법에서는 심층 신경망을 기반으로 추정한 마스크를 잡음 오염 음성에 곱하여 향상된 음성을 얻는다. 마스크 추정 모델로 VoiceFilter(VF) 모델을 사용하고 추정된 마스크로 얻은 음성으로부터 잔여 잡음을 보다 확실히 제거하기 위해 Spectrogram Inpainting(SI)기법을 적용한다. 본 논문에서는 음성 향상 결과를 보다 개선하기 위해 마스크 추정을 위한 모델 학습 과정에 사용되는 조합된 손실함수를 제안한다. 음성 구간에 남아 있는 잡음을 보다 효과적으로 제거하기 위해 잡음 오염 음성에 마스크를 적용한 Triplet 손실함수의 Positive 부분을 컴포넌트 손실함수와 조합하여 사용한다. 실험 평가를 위한 잡음 음성 데이터는 TIMIT 데이터베이스와 NOISEX92, 배경음악 잡음을 다양한 Signal to Noise Ratio(SNR) 조건으로 합성하여 만들어 사용한다. 음성 향상의 성능 평가는 Source to Distortion Ratio(SDR), Perceptual Evaluation of Speech Quality(PESQ), Short-Time Objective Intelligibility(STOI)를 이용한다. 실험을 통해 평균 제곱 오차로만 훈련된 기존 시스템과 비교하여, VF 모델은 평균 제곱 오차로 훈련하고 SI 모델은 조합된 손실함수를 사용하였을 때 SDR은 평균 0.5dB, PESQ는 평균 0.06, STOI는 평균 0.002만큼 성능이 향상된 것을 확인했다.

Big6 모델 및 수정 모델 분석 연구 (Analysis of the Big6 Skills Model and the Modified Big6 Models)

  • 박주현
    • 한국도서관정보학회지
    • /
    • 제49권3호
    • /
    • pp.331-359
    • /
    • 2018
  • 이 연구의 목적은 Big6 모델과 Big6 수정 모델을 분석하여 Big6 모델의 특징을 찾고 현장에서 Big6 모델을 적용하는데 필요한 시사점을 도출하는 데 있다. 이를 위하여 AASL과 ACRL의 정보 리터러시 기준과 Big6 모델을 비교하였으며, 교육목표분류학에 영향을 받은 Big6 모델과 Big6+3 모델, Big8 모델 및 LG사이언스랜드에서 제공하는 Big6 모델을 분석하였다. 분석결과, Big6 모델은 정보 문제 해결 모델과 메타인지 활성화 전략 및 학생들의 정보 리터러시를 향상시키는 발판으로 활용이 가능하였으며 구성주의, 탐구기반 학습, 교육과정 통합, 협력교육, ICT기술 모델로 활용이 가능하였다. 비판적 사고능력 향상은 Big6 모델보다 사서교사나 사서의 Big6 모델의 적용방법과 관련이 있었다. 사서교사와 사서는 Big6 모델을 적용하기 위하여 교육과정을 체계적이고 구체적으로 계획할 필요가 있다.

NVP 신뢰도 분석을 위한 새로운 접근방법에 관한 연구 (A Study on Method a New Approach for The Analsis of NVP Reliablity)

  • 신경애
    • 한국컴퓨터정보학회지
    • /
    • 제8권2호
    • /
    • pp.43-50
    • /
    • 2001
  • 소프트웨어 신뢰성을 향상시키는 방법에는 소프트웨어 결함 허용기법 중에서 가장 객관적이고 정량적으로 평가받는 것이 NVP(N-Version Programming)기법이다. 이 기법에서 신뢰도를 추정하는 모델로 이항분포를 사용하는데 이 모델은 각 컴포넌트 신뢰도의 값들이 동일하다는 한계점이 있었다. 본 연구에서는 기존 모델의 한계점을 해결하기 위하여 NVP 신뢰도 분석을 위한 새로운 접근 방법으로 유전자 알고리즘(Genetic Algorithms)을 적용하였고. 또한 적용 모델과 기존 모델을 서로 비교 검토하였다. 그 결과 전체시스템 신뢰도를 일정 수준이상 유지하면서 각 컴포넌트 신뢰도의 값들을 최적화 할 수 있었고. 또한 비용을 최소로 하는 최적의 수를 추정할 수 있었다. 그리고 적용 모델과 기존 모델을 비교 및 평가하여 타당성을 증명하였다.

  • PDF

확률강우량의 공간분포추정에 있어서 매개변수 추정기법의 비교분석 (Comparative Analysis of Parameter Estimation Methods in Estimation of Spatial Distribution of Probability Rainfall)

  • 서영민;여운기;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.413-413
    • /
    • 2011
  • 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.

  • PDF

원통 모델과 스테레오 카메라를 이용한 포즈 변화에 강인한 얼굴인식 (Pose-invariant Face Recognition using a Cylindrical Model and Stereo Camera)

  • 노진우;홍정화;고한석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.929-938
    • /
    • 2004
  • 본 논문에서는 원통모델과 스테레오 카메라를 이용하여 대상의 포즈 변화에 강인한 얼굴인식 방법을 제안한다. 입력으로 하나의 영상을 취할 수 있는 경우와 스테레오 영상을 취할 수 있는 경우의 두 가지로 나누어 다룬다. 단일 입력 영상인 경우 정면이 아닌 입력 영상에 대하여 원통 모델을 이용하여 좌우방향(yaw)으로 포즈를 보상하고, 스테레오 입력 영상인 경우 스테레오 기하학을 이용하여 예측된 상하방향(pitch) 포즈로 대상의 상하 변화까지 보상한다. 또한 스테레오 카메라를 통하여 동시에 두 개의 영상을 얻는다는 장점이 있기 때문에 결정 단계 융합(decision-level fusion) 방법을 이용하여 전체적인 인식률을 향상시킨다. 실험 결과, 좌우 포즈 변환을 통하여 인식률이 61.43%에서 94.76%로 향상되었음을 볼 수 있었고, 보다 복잡한 3차원 얼굴 모델과의 비교 결과 인식률이 양호함을 확인할 수 있었다. 또한 스테레오 카메라 시스템을 이용하여 얼굴이 위로 향한 영상일 경우 5.24%의 인식률을 향상시켰고, 결정 단계융합에 의해 추가로 3.34%의 인식률을 향상시킬 수 있었다.

BackTranScription (BTS)기반 제주어 음성인식 후처리기 연구 (BackTranScription (BTS)-based Jeju Automatic Speech Recognition Post-processor Research)

  • 박찬준;서재형;이설화;문현석;어수경;장윤나;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.178-185
    • /
    • 2021
  • Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다.

  • PDF

잡음 환경에 효과적인 음성인식을 위한 특징 보상 이득 기반의 음성 향상 기법 (Speech enhancement method based on feature compensation gain for effective speech recognition in noisy environments)

  • 배아라;김우일
    • 한국음향학회지
    • /
    • 제38권1호
    • /
    • pp.51-55
    • /
    • 2019
  • 본 논문에서는 잡음 환경에 강인한 음성 인식 성능을 위해 특징 보상 이득을 이용한 음성 향상 기법을 제안한다. 본 논문에서는 변분모델 생성 기법을 채용한 병렬 결합된 가우스 혼합 모델(Parallel Combined Gaussian Mixture Model, PCGMM) 기반의 특징 보상 기법으로부터 계산할 수 있는 특징 보상 이득을 이용하는 음성 향상 기술을 제안한다. 불일치 환경 음성 인식 시스템 적용 환경에서 본 논문에서 제안하는 기법이 실험 결과에서 기존의 전처리 기법 및 이전 연구에서 제안된 특징 보상 기반의 음성 향상 기법에 비해 다양한 잡음 및 SNR(Signal to Noise Ratio) 조건에서 월등한 인식 성능을 나타내는 것을 확인한다. 또한 잡음 모델 선택 기법을 적용함으로써 음성 인식 성능을 유사한 수준으로 유지하면서 계산량을 대폭적으로 감축할 수 있다.