• Title/Summary/Keyword: 모델트리기법

Search Result 225, Processing Time 0.033 seconds

A Study on Optimization of Decision Tree based State Tying Model (결정트리 기반 상태공유 모텔 최적화에 관한 연구)

  • 한명희;이호준;김순협
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

The Integer Superscalar Processor Performance Model Using Dependency Trees and the Relative ILP (종속 트리와 상대적 병렬도를 이용하는 수퍼스칼라 프로세서의 정수형 성능 예측 모델)

  • 이종복
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.13-15
    • /
    • 2001
  • 최근에 이르러 프로세서의 병렬성을 분석적 기법으로 예측하기 위한 연구가 활발해지면서 프로세서의 성능 예측 모델에 대한중요성이 대두되고 있다. 그러나 기존의 연구는 현재 광범위하게 사용되고 있는 다중 분기 예측법을 이용하는 프로세서에 대하여 분기 차수와 관계없는 재귀적 성능 모델을 제공해주지 않는다. 본 논문에서는 이것을 해결하기 위하여, 매 싸이클마다 명령어 종속 트리를 구성하고 종속인 명령어 간에 상대적인 병렬도 갓을 부여하여 성능 예측 모델 입력 데이타를 측정하였다. 그 곁과, 다중 분기 예측법을 사용하는 프로세서에서 정수형 프로그램에 대한 성능을 기존의 성능모델보다 작은 상대 오차로 예측할 수 있다.

  • PDF

Petri Net Modeling of Database System Reliability (데이터베이스 시스템 신뢰도를 위한 페트리 네트 모델링)

  • Ro Cheul-Woo;Kim Kyung-Min;Kim Ti-Na
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.315-319
    • /
    • 2005
  • In this paper, we present a Petri Net (PN) model for reliability analysis of fault-tolerant database system models that consists of components one shared memory, bus, processors and database (disk). Each component can be failed and repaired individually. The system is operational as long as database and one of component is operational. We develop Stochastic Reward Net (SRN) Model for reliability analysis of database system. SRN is potential to define various reward functions. and can be easily used to obtain performance measures. The modeling techniques using variable cardinality, enabling function, timed transition priority in SRN are shown.

  • PDF

Scenario-Driven Verification Method for Completeness and Consistency Checking of UML Object-Oriented Analysis Model (UML 객체지향 분석모델의 완전성 및 일관성 진단을 위한 시나리오기반 검증기법)

  • Jo, Jin-Hyeong;Bae, Du-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.3
    • /
    • pp.211-223
    • /
    • 2001
  • 본 논문에서 제안하는 시나리오기반 검증기법의 목적은 UML로 작성된 객체지향 분석모델의 완전성 및 일관성을 진단하는 것이다. 검증기법의 전체 절차는 요구분석을 위한 Use Case 모델링 과정에서 생성되는 Use Case 시나리오와 UML 분석모델로부터 역공학적 방법으로 도출된 객체행위 시나리오와의 상호참조과정 및 시나리오 정보트리 추적과정을 이용하여 단계적으로 수행된다. 본 검증절차를 위하여 우선, UML로 작성된 객체지향 분석모델들은 우선 정형명세언어를 사용하여 Use Case 정형명세로 변환하다. 그 다음에, Use Case 정형명세로부터 해당 Use Case 내의 객체의 정적구조를 표현하는 시나리오 정보트리를 구축하고, Use Case 정형명세 내에 포함되어 있는 객체 동적행위 정보인 메시지 순차에 따라 개별 시나리오흐름을 시나리오 정보트리에 표현한다. 마지막으로 시나리오 정보트리 추적과 시나리오 정보 테이블 참조과정을 중심으로 완전성 및 일관성 검증작업을 수행한다. 즉, 검증하고자 하는 해당 Use Case의 시나리오 정보트리를 이용한 시나리오 추적과정을 통해 생성되는 객체행위 시나리오와 요구분석 과정에서 도출되는 Use Case 시나리오와의 일치여부를 조사하여 분석모델과 사용자 요구사양과의 완전성을 검사한다. 그리고, 시나리오 추적과정을 통해 수집되는 시나리오 관련종보들을 가지고 시나리오 정보 테이블을 작성한 후, 분석과정에서 작성된 클래스 관련정보들의 시나리오 포함 여부를 확인하여 분석모델의 일관성을 검사한다. 한편, 본 논문에서 제안하는 검증기법의 효용성을 증명하기 위해 대학의 수강등록시스템 개발을 위해 UML을 이용해 작성된 분석모델을 특정한 사례로써 적용하여 보았다. 프로세싱 오버헤드 및 메모리와 대역폭 요구량 측면에서 MARS 모델보다 유리함을 알 수 있었다.과는 본 논문에서 제안된 프리페칭 기법이 효율적으로 peak bandwidth를 줄일 수 있다는 것을 나타낸다.ore complicate such a prediction. Although these overestimation sources have been attacked in many existing analysis techniques, we cannot find in the literature any description about questions like which one is most important. Thus, in this paper, we quantitatively analyze the impacts of overestimation sources on the accuracy of the worst case timing analysis. Using the results, we can identify dominant overestimation sources that should be analyzed more accurately to get tighter WCET estimations. To make our method independent of any existing analysis techniques, we use simulation based methodology. We have implemented a MIPS R3000 simulator equipped with several switches, each of which determines the accuracy level of the

  • PDF

Graph Classification using Co-occurrent Frequent Subgraphs (동시 발생 빈발 부분그래프를 이용한 그래프 분류)

  • Park, Ki-Sung;Han, Yong-Koo;Lee, Young-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.109-111
    • /
    • 2011
  • 대부분의 빈발 부분그래프를 이용한 그래프 분류 알고리즘들은 빈발 부분그래프를 마이닝하여 개별적인 빈발 부분그래프의 포함 여부를 특징 벡터로 구성하는 단계와 기계학습 알고리즘들을 훈련시켜 분류 모델을 수립하는 단계로 구성된다. 이와 같은 그래프 분류 알고리즘들은 부분그래프의 개별적인 존재 여부만을 이용하여 특징을 구성하기 때문에 변별력이 떨어지는 문제점이 있다. 본 논문에서는 빈발 부분그래프들이 동시 발생하는 특징 벡터의 변별력을 반영할 수 있는 특징선택 기법을 적용한 모델 기반 탐색트리 기법을 제안한다. 동시 발생 부분그래프를 특징으로 사용하여 변별력을 향상시킬 수 있으며, 모델기반 탐색 트리를 사용하여 제안하는 기법이 기존의 방법보다 더 높은 그래프 분류 성능을 보이는 것을 입증하였다.

Weak-linked Neurons Elimination Method based Neural Network Models for Bankruptcy Prediction (약체연결뉴런 제거법에 의한 부도예측용 인공신경망 모형에 관한 연구)

  • 손동우;이웅규
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.05a
    • /
    • pp.115-121
    • /
    • 2000
  • 본 연구는 인공신경망 모형에서 최적 입력 변수를 선정하기 위하여 새로운 선처리 기법인 약체연결뉴런 제거법을 제안하고 그 예측력의 우월성을 순수 인공신경망과 의사결정트리로 선처리한 인공신경망 모델과 각각 비교했으며, 그 결과를 보면 본 연구에서 제안하고 있는 약체연결뉴런 제거법에 의해 입력변수 선정과정을 거친 모델의 성과가 순수 인공신경망이나 의사결정트리로 선처리한 인공신경망 모델에 비해 예측적중율이 우수한 것으로 나타났다.

  • PDF

Performance Optimization Technique for Overlay Multicast Trees by Local Transformation (로컬 변환에 의한 오버레이 멀티캐스트 트리의 성능 최적화 기법)

  • Kang, Mi-Young;Kwag, Young-Wan;Nam, Ji-Seung;Lee, Hyun-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.59-65
    • /
    • 2007
  • Overlay Multicast is an effective method for efficient utilization of system resources and network bandwidth without a need for hardware customization. Multicast tree reconstruction is required when a non-leaf node leaves or fails. However frequent multicast tree reconstruction introduces serious degradation in performance. In this paper, we propose a tree performance optimization algorithm to solve this defect by using information(RTCP-probing) that becomes a periodic feedback to a source node from each child node. The proposed model is a mechanism performed when a parent node seems to cause deterioration in the tree performance. We have improved the performance of the whole service tree using the mechanism and hence composing an optimization tree. The simulation results show that our proposal stands to be an effective method that can be applied to not only the proposed model but also to existing techniques.

Efficient Multicasting Mechanism for Mobile Computing Environment (이동 호스트 환경에서의 효율적인 멀티캐스팅 기법)

  • 박규석;김재수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.138-143
    • /
    • 1998
  • 이동 컴퓨팅 환경은 휴대용 컴퓨터가 다른 곳으로 이동하여도 무선 전송 링크를 통하여 공간 제약이 없이 네트워크 접속을 유지할 수 있는 새로운 컴퓨팅 모델이다. 본 논문에서는 이동 컴퓨팅 환경에서 멀티캐스트 그룹에 속한 이동 호스트들에게 호스트의 위치에 관계없이 효율적으로 패킷을 전송하는 이동 멀티캐스팅 기법을 제시한다 이 기법은 기존의 Mobile IP에 근거한 알고리즘과는 달리 멀티캐스트 그룹에 속한 이동 호스트들은 멀티캐스트 주소로 구별이 되며, 멀티캐스트 그룹에 속한 호스트가 이동을 하면 멀티캐스트 분배 트리를 재구성한다. 이동 호스트로의 패킷 전송은 멀티캐스트 분배 트리에 속한 멀티캐스트 라우터로 분배되어 이동 호스트로 전달되게 된다.

  • PDF

Data Modeling using Cluster Based Fuzzy Model Tree (클러스터 기반 퍼지 모델트리를 이용한 데이터 모델링)

  • Lee, Dae-Jong;Park, Jin-Il;Park, Sang-Young;Jung, Nahm-Chung;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.608-615
    • /
    • 2006
  • This paper proposes a fuzzy model tree consisting of local linear models using fuzzy cluster for data modeling. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. As a final step, data prediction is performed with a linear model having the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional model tree and artificial neural networks.

A Test Case Generation Method for Data Distribution System of Submarine (잠수함 데이터 분산 시스템을 위한 테스트 케이스 생성 기법)

  • Son, Suik;Kang, Dongsu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-144
    • /
    • 2019
  • Testing maturity is critical to the system under development with lack of experience and skills in the acquisition of the weapon systems. Defects have a huge impact on important system operations. Sharing real-time information will lead to rapid command and mission capability in submarine. DDS(Data Distribution System) is a very important information sharing system and interface between various manufacturers or data formats. In this paper, we analyze data distribution characteristics of distributed data system to group data-specific systems and proposes a test case-generation method using path search of postorder and preorder which is a tree traversal in path testing method. The proposed method reduces 73.7.% testing resource compare to existing methods.