본 논문은 매칭 퍼슈잇 (Matching Pursuit)에 인지적인 가중치를 사용하여 오디오 신호를 정현파 모델링하는 것에 대해 기술한다. 매칭 퍼슈잇은 입력 신호에서 에너지가 가장 큰 성분들을 반복적으로 추출해 원 신호와 재생 신호의 차이가 영에 도달될 때까지 계속된다. 본 논문에서는 매칭 퍼슈잇에 심리음향모델을 사용한 인지적인 매칭 퍼슈잇으로 입력 신호로부터 인지적으로 중요한 성분을 차례대로 추출하였다 인지적인 매칭 퍼슈잇의 성능을 평가하기 위해 인지적인 가중치를 주지 않은 정현파 매칭 퍼슈잇과 비교 평가하였다. 여러 가지 입력 신호에 대한 실험 결과 정현파 매칭 퍼슈잇보다 인지적인 매칭 퍼슈잇의 성능이 좋았고, 특히 시간축 변화율이 큰 신호일 경우에 인지적인 매칭 퍼슈잇을 통해 원래 신호의 음질을 더 잘 복원할 수 있었음을 확인하였다.
데이터마이닝과 바이오인식 분야의 판별모델의 성능평가 방법을 이종의 공간 데이터 셋의 매칭에 적용함으로써 좋은 매칭결과를 보이는 판별모델을 도출하고자 한다. 이를 위하여 매칭 기준별 매칭 후보객체 쌍의 거리 값을 구하고, 이들 거리 값을 Min-Max 방법과 Tanh 방법으로 정규화하여 유사도를 산출한다. 산출된 유사도를 CRITIC 방법, Matcher Weighting 방법 그리고 Simple Sum 방법으로 결합하여 형상유사도를 도출하는 판별모델을 적용하였다. 각 판별모델을 PR곡선과 AUC-PR로 평가한 결과, Tanh 정규화와 Simple Sum 방법을 적용한 판별모델의 AUC-PR이 0.893으로 가장 높게 나타났다. 따라서 이종의 공간 데이터 셋의 매칭을 위해서는 Tanh 정규화를 이용하여 각 매칭기준별 유사도를 산출하고 Simple Sum 방법으로 형상유사도를 구하는 판별모델이 적합한 것으로 사료된다.
비디오 데이터 분석은 감시, 검색, 스포츠 경기 자동 요약 등 많은 분야에서 사용되는 기술이다. 그러나 감시 카메라나 스포츠 경기 비디오와 같이 사람의 영역이 저해상도인 환경에서는 포즈 추정, 모델과의 매칭이 어렵기 때문에 제스처 인식 연구는 많이 이루어지고 있지 못하다. 본 논문에서는 카메라가 Pan/Tilt/Zoom 동작을 하고 사람이 빠르게 움직이는 방송용 테니스 비디오에서, 사람을 추출하고, Curvature Scale Space를 기반으로 한 특징을 추출하여 학습된 포즈 모델과 매칭하는 방법과, 차원의 축소를 통해 일련의 포즈들을 학습된 제스처와 매칭하는 방법을 제안한다. 50개의 방송용 테니스 경기 비디오 장면에 대하여 서브 제스처 추출을 수행한 결과, 서브 포즈에 대하여 모델과 매칭이 잘 되고, 매칭이 되지 않는 포즈를 포함하는 시퀀스에 대해서도 강인한
본 연구에서는 데이터 저장의 질적 향상을 도모하는 XML 스키마 매칭의 효율적 활용방안을 제시하였다. 이를 위하여 매칭의 가중치의 변화에 따라 달라지는 정확도 데이터를 수집하고, 수집한 데이터를 활용하여 데이터 마이닝 기법 중 하나인 의사결정나무 모델을 수립하였다. 수립모델을 응용하여 구현한 가중치 자동선정 모듈은 설명변수인 교량의 형식, 문서가 포함하고 있는 요소의 수, 문서를 작성한 회사 등의 값에 따라 의사결정나무 모델의 목표변수인 정확도뿐만 아니라, 가장 높은 정확도를 보일 수 있는 가중치까지 간접적으로 제안가능하다. 본 연구로 구현한 모듈을 통해 제안된 XML 스키마 매칭 가중치를 활용하면 그렇지 않은 경우에 비하여 약 10% 정확도 상승효과가 있음을 알 수 있었다.
본 논문에서는 토픽맵의 모델 특성을 고려한 토픽맵 매칭 및 통합 기법을 제안한다. 이전까지의 대부분의 스키마 매칭 연구들은 계산 시간의 효율성을 고려하지 않고 매칭 기법의 범용성 및 정확성을 높이기 위한 목적으로 개발되어 왔다. 그러나 현재 표준적인 온톨로지 언어로 RDF/OWL과 토픽맵이 사용되고 있으며 앞으로 많은 온톨로지들이 이들 언어로 구현될 것이다. 따라서 본 논문에서는 토픽맵 데이터 모델의 구조적 특성 및 제약조건을 고려하여 토픽 분할, 토픽명기반 매칭연산, 속성기반 매칭연산, 계층구조기반 매칭연산, 연관관계기반 매칭연산 및 통합 알고리즘을 개발함으로써 효과적이면서 효율적인 토픽맵 매칭 및 통합이 가능함을 보인다.
본 논문에서는 개선된 챔퍼매칭(Chamfer Matching)으로 2차원 평면 객체 모델을 추적하는 방법을 제시한다. 기존 챔퍼매칭은 배경이 복잡할 경우 객체와 영상간의 유사도를 계산하기 어려운 단점이 있다. 따라서 본 논문에서는 챔퍼매칭을 에지와 코너특징을 사용해 복잡한 배경에서도 유사도를 계산할 수 있도록 개선한다. 개선된 챔퍼매칭은 기하(Geometric) 모델을 추적하는 파티클 필터(Particle Filter)의 우도함수로 사용된다. 기하모델은 2차원 평면 객체를 에지 및 코너 특징점과 포즈로 모델링하며, 색상 변화에 안정적인 객체서술자이다. 파티클 필터는 칼만필터 보다 더 비선형적인 추적 방법이다. 따라서 제안된 방법은 복잡한 환경에서 객체를 추적하기 위해 기하모델 및 파티클 필터, 개선된 챔퍼 매칭을 사용한다. 실험 결과에서는 제안 방법의 강건함을 기존 방법의 비교를 통해 나타낸다.
본 연구는 교량 시설물의 재난방지를 위한 정보시스템의 구축에 있어 선행되어야 하는 교량 구조계산서 항목 저장정보의 질적 향상을 위해 XML 스키마 매칭 기법을 효율적으로 활용할 방법에 대해 제시하였다. 이를 위하여 XML 스키마 매칭에 사용되는 가중치 변화에 따른 매칭 정확도를 나타내는 데이터를 구축하고, 이를 활용하여 데이터 마이닝 기법 중 하나인 의사결정나무 모델을 구현하여 교량의 형식, 문서가 포함하고 있는 항목의 수, 문서를 작성한 회사에 따라 달라질 수 있는 최적의 가중치를 지동으로 선정할 수 있는 프로세스를 제안하였다. 의사결정나무 모델을 통해 결정한 매칭 가중치는 이전에 비하여 약 10% 정확도 상승효과가 있음을 알 수 있었다.
본 논문에서는 거리변환 기반의 정밀한 fiducial 마크 정렬 알고리즘을 제안한다. 거리변환은 물체의 중심에 가중치를 가지는 특성이 있는데 이는 AOI 공정에서 에칭, 이동과 같은 다양한 요소들로부터 획득되는 타겟영상에 대하여 강인하게 물체의 중심으로 매칭할 수 있도록 한다. 제안한 방법은 우선 입력 타겟영상에 대하여 이진화를 진행하고, 다음 모델과 타겟영상에 대하여 거리변환을 이용하여 거리특징을 추출하고, 추출된 모델과 타겟영상에 대한 거리특징을 NCC(Normalized Cross Correlation)를 이용하여 매칭한 후, 매칭 스코어에 대하여 Sub-pixel 분석을 진행하여 sub-pixel 레벨의 정확도를 가지도록 한다. 실험결과로부터 제안한 거리특징을 이용한 매칭 알고리즘이 기존의 픽셀 밝기 값을 이용한 매칭보다 강인하고 정확하게 매칭됨을 확인할 수 있었다.
최근 고객에게 개인화된 서비스를 제공하기 위한 방법의 하나인 CRM 시스템에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 룰 기반 CRM에서의 효율적인 룰 매칭을 목적으로 하는 시간요소를 고려한 룰 모델을 제안하고자 한다. 룰 매칭 시점관련조건을 고객관련조건과 구분함으로써 룰의 의미를 구조적으로 명백히 파악할 수 있고 룰 매칭 시에 룰 매칭 시점관련조건을 고객관련조건보다 먼저 수행할 수 있으므로 현재 시점에 룰 매칭을 해야 하는 룰들만을 대상으로 전체 고객 데이터를 검색할 수 있다. 이 때 룰 매칭 시간요소조건을 분류하기 위하여 필요한 카데고리 정보를 저장하고 계산 로직의 반복 수행을 막기 위한 목적으로 어휘를 정의하여 사용하는 방법에 대해서 설명한다.
본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 히스토그램 매칭 및 선형 회귀분석 모델(linear regression model)을 활용한 강건한 차량 운행 동영상의 안정화(video stabilization) 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 적용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고(hand-held) 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델 기반의 안정화 기법을 제안한다. 제안된 기법은 입력영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전이동 변환을 선형 근사하여 시간 영역 상의 입력 영상에 대한 안정화를 달성한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 실제 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.