This paper presents an anomaly detection system that uses an LSTM-Autoencoder model to identify early-stage anomalies in the blade pitch system of floating wind turbines. The sensor data used in power plant monitoring systems is primarily composed of multivariate time-series data for each component. Comprising two unidirectional LSTM networks, the system skillfully uncovers long-term dependencies hidden within sequential time-series data. The autoencoder mechanism, learning solely from normal state data, effectively classifies abnormal states. Thus, by integrating these two networks, the system can proficiently detect anomalies. To confirm the effectiveness of the proposed framework, a real multivariate time-series dataset collected from a wind turbine model was employed. The LSTM-autoencoder model showed robust performance, achieving high classification accuracy.
The domestic tourism industry mostly relies on quantitative surveys for customer satisfaction. However, customer participation of the questionnaires is extremely low and the improvement of the dissatisfactory factors is not being performed promptly. In this paper, we propose a new topic map system and prove its empirical effectiveness to improve the accuracy of customer feedback information and the efficiency of the analysis process. The topic map system is a system for analyzing large amounts of customer feedback data in real time. It uses text mining and ontology techniques by integrating data collected over a certain period from real-time SNS and quantitative data obtained from existing survey systems. The effect after improving the analyzed factors of dissatisfaction is also a new and innovative evaluation system for monitoring customer satisfaction in real time. The classification based on this integrated data is a classification system that is specific to the product or the customer. According to this classification, it is possible to measure the effect of the recognition and improvement of the complaint factor in real time on the topic map system. This provides a sophisticated prioritization of the improvement factors and enables customer satisfaction quality control as a PDCA feedback system. In addition, the survey period and costs are greatly shortened, and responses can be more precise to the existing survey method. As a practical application, this system is applied to the largest H travel agency in Korea to prove the accuracy and efficiency of the proposed system.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.3
/
pp.279-286
/
2015
The rapid increase of the current marine accidents is mainly due to the human execution errors. In an effort to address this, various kinds of researches such as construction of the digital vessels and vessel information monitoring systems have been conducted. But for safe navigation of vessels, it lack on systems study which can efficiently store, utilize and manage the mass data accepted by the vessel. In this paper, we propose a VWS(Virtual World System) that is based on the architecture of intelligent systems RVC(Reactive Layer-Virtual World-Considerative Layer) model of intelligent autonomous navigation system. VWS is responsible to store all the necessary information for safe navigation of the vessel and the information services to the sub-system of intelligent autonomous navigation system. VWS uses topology database to express the specific problem area, and utilizes a scheduling to reflect the characteristics of the real-time processing environment. Also, Virtual World defines API for the system to reflect the characteristics of the distributed processing environment. As a case study, the VWS is applied to a intelligent ship autonomous navigation system, and simulation is done to prove the effectiveness of the proposed system.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.5
/
pp.159-166
/
2008
Recently, according to the rapid development of location positioning technology and wireless communications technology and increasement of usage of moving object data, many researches and developments on the real-time locating systems which provides real time service of moving object data stream are under proceeding. However, MO (Moving Object) DBMS used based system in the in these systems is the inefficient management of moving object data streams, and the existing DSMS (Data Stream Management System) has problems that spatio-temporal data are not handled efficiently. Therefore, in this thesis, we designed and implemented spatio-temporal DSMS for efficient real-time management of moving object data stream. This thesis implemented spatio-temporal DSMS based STREAM (STanford stREam dAta Manager) of Stanford University is supporting real-time management of moving object data stream and spatio-temproal query processing and filtering for reduce the input loading. Specifically, spatio-temporal operators of the spatio-temporal DSMS support standard interface of SQL form which extended "Simple Feature Specification for SQL" standard specifications presented by OGC for compatibility. Finally, implemented spatio-temporal DSMS in this thesis, proved the effectiveness of the system that as applied real-time monitoring areas that require real-time locating of object data stream DSMS.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.5
/
pp.1-9
/
2016
Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.9
/
pp.146-156
/
2017
In this study, the causal relationship between the main factors influencing the import of agricultural products and the changes in agricultural imports was investigated. In addition, we compared the magnitude of the impact of each factor on the changes in agricultural imports. It was found that the import liberalization rate, which represents the FTA factors and reflects the per capita GDP, the conditions of supply and demand of agricultural products in exporting countries and the changes in exchange rates, affects the changes of the agricultural products imports. However, the factors affecting the change of the imports by agricultural product category and the magnitude of the influence by each factor were different. This shows that various factors, other than the FTA factors, are compounding the changes in the agricultural imports. In the future, the market openings due to the implementation of the FTA will be further enlarged and the economic territory of the FTA will be further expanded, due to the implementation of additional FTAs, and the changes in the imports of agricultural products will cause damage to the domestic agricultural sector.
Kim, Hoon;Sun, Yan;Lee, Seung-Min;Ku, Bon-Jin;Ku, Yun-Mo;Kim, Tae-Yeon;Moon, Myung-Jin
Korean Journal of Organic Agriculture
/
v.29
no.4
/
pp.539-559
/
2021
Agricultural ecosystem biodiversity monitoring and community variation analysis of insects were conducted from 2016 to 2018 in selected conventional and organic farming fields in Goesan district, Chungcheongbuk-do, South Korea. The total number of 1,125 species in 16 orders and 207 families were identified. The numbers of species collected in the locations practicing organic farming were greater than the conventional farming both in the paddy fields (564 vs. 383 species) and the upland fields (471 vs. 365 species). Among them, Hemiptera had the most abundant of species, followed by Diptera, Hymenoptera, Coleoptera and Araneae. We calculated various index values of biodiversity (diversity index H', richness index R, evenness index J', dominance index D, and similarity index QS) based on quantitative measurements of species and individuals collected over three years of field monitoring. Variations in biodiversity index values in different agricultural systems show that the positive effect of organic farming is to produce more biodiversity than conventional farming systems. When compared to other index results reported in Korea, Japan and China, the richness index was higher and other index values were at similar levels.
Korean Journal of Agricultural and Forest Meteorology
/
v.25
no.3
/
pp.182-196
/
2023
Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.
As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.
Journal of the Korean Recycled Construction Resources Institute
/
v.1
no.3
/
pp.211-218
/
2013
Cyclic wet and dry conditions in the marine environment structures corrosion is known to be the fastest rising. For that reason, accelerated corrosion test methods for the reproduction of tidal environment has been actively conducted. However, many studies have estimated threshold value for steel corrosion or concentrated in chloride penetration analysis. In this study, cyclic wet and dry conditions to reproduce the structure of the environment in accelerated corrosion and chloride penetration test analysis was performed. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. Accelerated corrosion test results for each formulation was different corrosion periods, the order OPC> FA> BS> High-strength concrete. FEM durability interpretation program DuCOM was conducted under the same conditions as in accelerated corrosion test. The experimental RCPT tests demonstrated the validity of the result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.