• Title/Summary/Keyword: 명암대비 향상

Search Result 48, Processing Time 0.028 seconds

The Enhancement Scheme of the Image Contrast Using the Improvement of Local Contrast (지역 명암 대비 향상을 통한 영상의 명암대비 개선 기법)

  • Kim, Gwang-Hyeon;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.139-142
    • /
    • 2007
  • 본 논문은 지역 명암대비 향상을 통한 영상의 명암대비 개선 기법을 제안한다. 전역 대비 향상 기법은 영상 전체를 고려하여 대비를 향상시키므로 영상의 특성에 따라 영상이 뿌옇게 되거나 원하지 않는 인공적인 산물이 생성될 수 있다. 그리고 지역 대비 향상 기법은 블록화 및 영상의 화질이 훼손되는 문제점이 있다. 제안하는 기법은 다양한 블록 크기를 사용하여 지역 대비를 향상시켜 지역 대비가 가장 많이 향상된 영상의 히스토그램 평활화 함수를 이용하여 전체 영상의 명암대비를 향상시키는 방법을 제안한다. 명암대비가 낮은 다양한 영상의 실험을 통해서 제안하는 명암대비 향상 기법의 우수성을 입증하였다.

  • PDF

Global Contrast Enhancement Using Block based Local Contrast Improvement (블록기반 지역 명암대비 개선을 통한 전역 명암대비 향상 기법)

  • Kim, Kwang-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • This paper proposes a scheme of global image contrast enhancement using local contrast improvement. Methods of global image contrast enhancement redistribute the image gray level distribution using histogram equalization without considering image properties, and cause the result image to include image pixels with excessive brightness. On the other hand, methods of the block-based local image contrast enhancement have blocking artifacts and a problem of eliminating important image features during an image process to reduce them. In order to solve these problems, the proposed method executes the block-based histogram equalization on temporary images that an input image is divided into various fixed-size blocks. And then it performs the global contrast enhancement by applying the global histogram equalization functions to the original input image. Since the proposed method selects the best histogram equalization function from temporary images that are improved by the block-based local image contrast enhancement, it has the advantages of both the local and global image contrast enhancement approaches.

A Method of Histogram Compression Equalization for Image Contrast Enhancement (명암대비 향상을 위한 히스토그램 압축 평활화 기법)

  • Kim, Jong-in;Lee, Jae-Won;Honga, Sung-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.346-349
    • /
    • 2013
  • 화질향상에 큰 영향을 주는 요소 중의 하나는 명암대비 향상이다. 영상의 명암대비를 향상시키는 대표적인 방법으로 히스토그램 평활화(Histogram Equalization) 방법이 있으며, 히스토그램 평활화의 변형된 방법에 대한 다양한 연구가 이루어지고 있다. 그러나 기존의 방법들은 평균 밝기의 급격한 변화로 인하여 부자연스러운 결과영상을 얻거나, 대비 향상 효과가 낮은 결과를 얻는 단점이 종종 발생한다. 본 논문에서는 히스토그램 압축방법을 통해서 개선된 명암대비 향상 기법을 제안한다. 제안한 방법은 과도한 명암대비 증가로 인한 과포화 현상을 억제하기 위하여 히스토그램의 빈도수에 따라 히스토그램을 차등 압축시키도록 설계되어 있다. 실험결과 제안방법은 기존 방법에 비해 과포화 현상 없이 좋은 명암대비 향상 효과를 보였다.

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid (특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬)

  • Ha, Changwoo;Choi, Changryoul;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.928-937
    • /
    • 2013
  • This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

Histogram compression equalization method that has been deformed for the distribution of brightness and balanced improvement of the image contrast (영상의 명암대비 향상 및 균형적인 밝기 분포를 위한 변형된 히스토그램 압축 평활화 기법)

  • Kim, Jong-in;Lee, Jae-won;Hong, Sung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.820-823
    • /
    • 2013
  • Recently, the need for improving image quality of the image is increasing in various fields smartphones, cameras, and portable devices. How a significant impact on improving image quality of the image is a contrast enhancement, as a representative method to improve the contrast, the process of histogram equalization, various studies have been made. However, the method of histogram equalization general, by readjusting the only brightness, when the image histogram is biased to one side, due to changes in the excess brightness, distortions such as blocking phenomenon occurs. In this paper, we provide a contrast enhancement techniques through the compression and re-distribution of a well-balanced average brightness of the histogram distribution. By be differential compression histogram based on the histogram frequency in order to suppress the supersaturation phenomenon due to the increase in contrast ratio excessive repositioning well-balanced histogram lopsided, the proposed method, the balance of the brightness of the image I want to to take. The experimental results, the image brightness is balanced manner compared to conventional methods, the proposed method showed a good effect to improve the contrast without supersaturation phenomenon as compared with the conventional methods.

  • PDF

Contrast Improvement Technique Using Variable Stretching based on Densities of Brightness (명암의 밀도에 따른 가변 스트레칭을 이용한 영상대비 개선방법)

  • Lee, Myung-Yoon;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.37-45
    • /
    • 2010
  • This paper proposes a novel contrast enhancement method which determines the stretching ranges based on the distribution densities of segmented sub-histogram. In order to enhance the quality of image effectively, the contrast histogram is segmented into sub-histograms based on the density in each brightness region. Then the stretching range of each sub-histogram is determined by analysing its distribution density. The higher density region is extended wider than lower density region in the histogram. This method solves the over stretching problem, because it stretches using density rate of each area on the histogram. To evaluate the performance of the proposed algorithm, the experiments have been carried out on complex contrast images, and its superiority has been confirmed by comparing with the conventional methods.

Image Enhancement Using Homomorphic Transformation and Multiscale Decomposition (호모모프변환과 다중 스케일 분해를 이용한 영상향상)

  • Ahn, Sang-Ho;Kim, Ki-Hong;Kim, Young-Choon;Kwon, Ki-Ryong;Seo, Yong-Su
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1046-1057
    • /
    • 2004
  • An image enhancement method using both homomorphic transformation and multiscale decomposition is proposed. The original image is first transformed to homomorphic domain by taking the logarithm, is then separated to multiscales. These multiscales are combined with weighting. The combined signal is exponentially transformed back into intensity domain. In homomorphic domain, the magnitude control of low frequency component make change the dynamic range, and the magnitude control of the other frequency components contribute to enhancement of the contrast. The "${\AA}$ trous" algorithm, which has a simple and efficient scheme, is used for multiscale decomposition. The performance of proposed method is verified by simulation.

  • PDF

Histogram Equalization based on Differential Compression for Image Contrast Enhancement (영상의 명암대비 향상을 위한 차별적 압축 방법 기반의 히스토그램 평활화)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.96-108
    • /
    • 2014
  • In case of contrast of the image enhancement by using the conventional histogram equalization, over-enhancement, false contouring and distortion such as the details disappearance of the image occurs due to the excessive brightness change. Especially, these distortion appears when the brightness distribution is concentrated in a particular brightness level. In order to solve these problems, improved histogram equalization methods to transform the input histogram by clipping using threshold have been proposed, but contrast enhancement effect is reduced because it does not consider the characteristics of the input image's histogram to apply the same threshold for the entire histogram, and unnatural image is obtained because it does not retain the characteristics of the image. In this paper, to solve the problems of existing methods, we propose new equalization method that suppress excessive brightness changes by applying to the differential compression according to the histogram frequency, and maintain the characteristics of the input image. In addition, we propose a more effectively method to improve contrast by controlling the strength of the compression ratio depending on the characteristics of the input image.

Contrast Enhancement based on Gaussian Region Segmentation (가우시안 영역 분리 기반 명암 대비 향상)

  • Shim, Woosung
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.608-617
    • /
    • 2017
  • Methods of contrast enhancement have problem such as side effect of over-enhancement with non-gaussian histogram distribution, tradeoff enhancement efficiency against brightness preserving. In order to enhance contrast at various histogram distribution, segmentation to region with gaussian distribution and then enhance contrast each region. First, we segment an image into several regions using GMM(Gaussian Mixture Model)fitting by that k-mean clustering and EM(Expectation-Maximization) in $L^*a^*b^*$ color space. As a result region segmentation, we get the region map and probability map. Then we apply local contrast enhancement algorithm that mean shift to minimum overlapping of each region and preserve brightness histogram equalization. Experiment result show that proposed region based contrast enhancement method compare to the conventional method as AMBE(AbsoluteMean Brightness Error) and AE(Average Entropy), brightness is maintained and represented detail information.

A High-Performance and Low-Cost Histogram Equalization Scheme for Full HD Image (Full HD 비디오를 위한 고성능, 저비용 히스토그램 평활화 방법)

  • Choi, Jung-Hwan;Park, Jong-Sik;Lee, Seong-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1147-1154
    • /
    • 2011
  • Auto exposure (AE) in image signal processor (ISP) controls brightness of input image to the proper brightness when it is too dark or bright. But conventional AEs often fail to get proper brightness since AE controls only average brightness of image. Especially in applications that require object recognition, it cannot be solved the problem by AE of ISP. In this paper proposes Histogram Equalization (HE) processes that is the alternative of AE. It also proposes proper method to realize hardware and compensate HE problems conventional by using simple calculation.